SBS di equilibratura SBS
Hydrokompenser

Manuale per l’uso
con l’unità di comando Serie SB-5500
LL-5310 Rev 1.2

Productivity through Precision™
Contratto di licenza all’uso limitato

LEGGERE ATTENTAMENTE I TERMINI E LE CONDIZIONI SEGUENTI PRIMA DI APRIRE LA CONFEZIONE DEL PRODOTTO E DEL SOFTWARE CONCESSO IN LICENZA. COLLEGANDO IL CIRCUITO DI ALIMENTAZIONE ALL’UNITÀ DI COMANDO A MICROPROCESSORE SI ACCETTANO QUESTI TERMINI E CONDIZIONI. SE NON SI ACCETTANO I TERMINI E LE CONDIZIONI, RESTITUIRE SUBITO L’UNITÀ AL RIVENDITORE DA CUI LA SI È ACQUISTATA, ENTRO 15 GIORNI DALLA DATA DI ACQUISTO, PER OTTENERE IL RIMBORSO COMPLETO DELL’IMPORTO VERSATO PER L’ACQUISTO. SE IL RIVENDITORE NON RIMBORSASSE L’IMPORTO VERSATO PER L’ACQUISTO, RIVOLGERSI IMMEDIATAMENTE A SCHMITT INDUSTRIES, INC. AL SEGUENTE INDIRIZZO PER RESTITUIRE IL PRODOTTO.

Schmitt Industries, Inc. fornisce l’hardware e il software contenuto nell’unità di comando a microprocessore. Schmitt Industries, Inc. ha un prezioso interesse proprietario nel software e nella relativa documentazione (“Software”) e concede in licenza l’uso del Software all’utente ai sensi dei termini e delle condizioni seguenti. L’utente si assume la responsabilità della selezione del prodotto adatto per conseguire i risultati previsti nonché dell’installazione, dell’uso e dei risultati ottenuti.

Termini e condizioni della licenza

a. Si concede all’utente una licenza perpetua non esclusiva all’uso del Software esclusivamente con il prodotto e per l’uso con lo stesso. L’utente accetta che Schmitt Industries, Inc. rimarrà ininterrottamente titolare del diritto di proprietà del Software.

b. L’utente, i suoi dipendenti e agenti accettano di proteggere la confidenzialità del Software. È vietato distribuire, divulgare o altrimenti rendere il Software disponibile a terze parti, tranne che a un cessionario il quale accetti di essere vincolato da questi termini e condizioni della licenza. In caso di rescissione o scadenza di questa licenza per un motivo qualsiasi, permane l’obbligo di confidenzialità.

c. È vietato disassemblare, decodificare, tradurre, copiare, riprodurre o modificare il Software, tranne che per l’esecuzione di una copia a scopo di archiviazione o backup come necessario per l’uso con il prodotto.

d. L’utente accetta di mantenere inalterati tutti gli avvisi e i contrassegni proprietari presenti sul software.

e. L’utente può trasferire la presente licenza se al tempo stesso trasferisce il prodotto, purché il cessionario accetti tutti i termini e le condizioni della licenza stessa. Effettuato il trasferimento, la licenza viene rescissa e l’utente accetta di distruggere tutte le copie del Software in suo possesso.
Manuale dei dati tecnici e per l’uso
del
Sistema di equilibratura SBS Hydrokompenser
Per i sistemi con unità di comando serie Modello 5500

LL- 5310
Revisione del manuale n. 1.2
© 2010 Schmitt Industries, Inc.

Sede centrale
2765 NW Nicolai St.
Portland, OR 97210 USA
sbs-sales@schmitt-ind.com
Tel: +1 503.227.7908
Fax: +1 503.223.1258
www.schmitt-ind.com

Schmitt Europe Ltd
Ground Floor Unit 2
Leofric Court, Progress Way
Binley Industrial Estate
Coventry, CV3 2NT, England
enquiries@schmitt.co.uk
Tel: +44-(0)2476-651774
Fax: +44-(0)2476-450456
www.schmitteurope.com
Vantaggi del sistema SBS con unità di comando SB-5500

■ Aumenta la produttività riducendo il tempo di impostazione
■ Migliora la qualità delle parti eseguendo l'equilibratura automaticamente sino a 0,02 micron
■ L'unità di comando elettronica interamente digitale aumenta la durata e l'affidabilità del sistema
■ Facile da installare e usare
■ Durata più lunga di mole da rettifica, mole da ravvivatura e cuscinetti di mandrini
■ Funziona con i sistemi SBS già installati
■ Trasmissione dati Profibus, Ethernet e USB 2.0
■ Adattabilità internazionale: tensione, frequenza, comunicazioni e lingua sul display
■ La funzionalità a quattro canali riduce i costi permettendo l'equilibratura di più macchine
■ Supportato dal servizio clienti SBS di classe mondiale
Indice

Istruzioni generali ... 1
Finalità del sistema ... 1
Sommario della sicurezza dell’operatore ... 1
Principio di funzionamento e connessione del sistema ... 2
Considerazioni ambientali ... 3
 Altre sorgenti di vibrazioni.. 3
 Condizioni della macchina ... 4
Installazione del sistema ... 4
 Camera di equilibratura ... 4
 Blocco della valvola .. 4
 Installazione e allineamento dell’ugello ... 5
 Sensore RPM ... 5
 Unità di comando SBS... 6
 Posizione del sensore delle vibrazioni ... 6
Istruzioni per l’uso dell’unità di comando.. 7
 Comandi sul pannello anteriore .. 7
 Sequenza di avvio sul display .. 7
 SETUP... 8
 Unità di comando senza pannello anteriore collegato ... 8
 Connettori sul pannello posteriore .. 9
 Connettori della scheda dell’equilibratore sul pannello posteriore ... 10
Funzionamento dell’equilibratore ... 10
 Led di stato degli slot dell’equilibratore ... 10
 Elementi della schermata principale dell’equilibratore ... 10
 Impostazioni del MENU ... 11
 Impostazioni equilibratura .. 12
 Unità vibrazione .. 13
 Vel. equilibratura ... 13
 Grafico vibrazioni ... 13
 Preequilibratura .. 13
 Nome scheda ... 13
 Immissioni menu ... 14
 Sensore RPM ... 14
 Impostaz. fabbr ... 14
 RPM critici .. 14
 MODO CNC BOT ... 15
 Preparazione all’impostazione dei parametri di funzionamento ... 15
 Vibrazioni di fondo ... 15
 Verifica delle dimensioni dell’equilibratore ... 15
 Impostazione dei parametri di funzionamento ... 16
 Livello LIMITE dell’equilibratura automatica .. 16
 Livello di TOLLERANZA dell’equilibratura automatica ... 16
 Livello CRITICO dell’equilibratura automatica .. 17
 Visualizzazione del livello di vibrazioni ... 17
 Selezione della velocità di equilibratura ... 17
 Equilibratura automatica ... 17
 Pre-equilibratura .. 18
 Preparazione alla pre-equilibratura .. 18
 Elementi della schermata di pre-equilibratura per un singolo piano .. 19
 Elementi della schermata di pre-equilibratura comuni a due piani .. 19
 Convenzioni per le modifiche e la navigazione .. 20
 Impostazione della pre-equilibratura ... 21
 Procedimento di pre-equilibratura .. 22
 Quattro parti di ciascuna fase di pre-equilibratura: .. 23
Istruzioni generali

Finalità del sistema

Affinché la mola di una rettificatrice esegua tagli di precisione, produca finiture regolari delle superfici e generi la corretta geometria di pezzi, è necessario prevenire vibrazioni durante il processo di rettifica. Una delle cause principali di vibrazioni durante la rettifica è l’esistenza di sbilanciamenti nella mola, spesso causati dalla natura eterogenea del materiale con cui è costruita la mola stessa, che contiene un gran numero di granuli distribuiti disuniformemente e che quindi causano uno sbilanciamento intrinseco. Tale sbilanciamento può essere aggravato dal fissaggio eccentrico della mola, da una larghezza variabile della mola, da sbilanciamenti nel mandrino e dall’assorbimento del liquido refrigerante nella mola. Considerando tutti questi fattori, anche un’equilibratura iniziale eseguita con attenzione non durerà a lungo. Inoltre, a causa dell’usura e della ravvivatura, la dinamica rotazionale di una mola cambia continuamente. Per questi motivi, da lungo tempo l’equilibratura dinamica delle mole è riconosciuta come una fase importante del processo di produzione.

Il sistema di equilibratura SBS è stato sviluppato per offrire agli operatori della rettificatrice la possibilità di eseguire l’equilibratura dinamica tenendo presente i seguenti obiettivi:

- Facilità d’uso e funzionalità
- Massima efficienza della rettificatrice
- Requisiti minimi di installazione
- Requisiti minimi di manutenzione
- Prezzo di acquisto accessibile

Sommario della sicurezza dell’operatore

Questo sommario contiene informazioni necessarie per l’uso in sicurezza del sistema di equilibratura SBS per rettificatrici. Nel presente manuale sono riportate, nei punti pertinenti, specifiche avvertenze e precauzioni che potrebbero non comparire in questo sommario. Prima di installare e usare il sistema di equilibratura SBS, è necessario leggere con attenzione l’intero manuale. Dopo avere letto il manuale, rivolgersi a Schmitt Industries Inc. per ulteriore assistenza tecnica.

Avvertenza: Osservare tutte le precauzioni per l’uso della rettificatrice. Non farla funzionare oltre i limiti di un’equilibratura sicura.

Avvertenza: Se non si fissano correttamente i componenti del sistema di equilibratura SBS al mandrino della rettificatrice, comprese le viti di bloccaggio dell’adattatore in dotazione, si causano rischi per la sicurezza durante il funzionamento della macchina.

Avvertenza: Mai mettere in funzione una rettificatrice senza tutte le coperture di sicurezza adatte nella giusta posizione.

Attenzione: Per prevenire danni all’attrezzatura, accertarsi che la tensione di linea sia compresa nell’intervallo specificato per il sistema (vedere la sezione Dati tecnici).

Attenzione: Solo tecnici di manutenzione qualificati devono intervenire sul sistema di equilibratura SBS. Per prevenire il rischio di folgorazione, non rimuovere il coperchio dell’unità di comando né cavi mentre il circuito di alimentazione è collegato.
Principio di funzionamento e connessione del sistema

Il sistema di equilibratura SBS funziona in base al principio della compensazione della massa per un determinato sbilanciamento della mola. Lo sbilanciamento intrinseco di una mola è uguale al prodotto della sua massa per “e”, la distanza tra il baricentro e il centro di rotazione della mola.

$$\text{Sbilanciamento intrinseco} = e \times \text{Massa della mola}$$

$$\text{Sbilanciamento intrinseco} = r \times \text{Massa peso equilibratore}$$

In pratica lo sbilanciamento di una mola si determina tramite lo sbilanciamento misurato della mola stessa. Lo sbilanciamento misurato è uguale al prodotto della massa di un peso, posizionato in modo da equilibrare la mola, per “r”, la distanza fra il baricentro del peso stesso e il centro di rotazione della mola. In entrambi i casi, lo sbilanciamento è calcolato come il prodotto di una massa per una distanza; grammi e centimetri sono le unità di misura utilizzate per riferimento dal sistema.

Nel sistema Hydrokompenser, la compensazione dello sbilanciamento avviene attraverso il liquido (refrigerante o olio) iniettato nei quattro quadranti all’interno della camera di equilibratura rotante. La camera di equilibratura è fissata al supporto della mola di rettifica. Il liquido iniettato è distribuito e conservato in ciascun singolo quadrante della camera attraverso la forza centrifuga.

Questo diagramma illustra il metodo di equilibratura di base del sistema Hydrokompenser, in cui U è il vettore dello sbilanciamento, V₁ e V₂ sono i vettori prodotti dal liquido iniettato in ciascun quadrante della camera e K è il vettore di compensazione risultante dalla somma di V₁ e V₂.

Il sistema è composto da una camera di equilibratura (per l’aggiunta e la posizione del fluido di equilibratura), un ugello a quattro porte (per l’erogazione del fluido di equilibratura a ciascun quadrante della camera), un blocco della valvola (per il filtraggio e il controllo del liquido all’ugello), un sensore RPM (alcuni modelli dell’ugello comprendono il sensore RPM), un sensore di vibrazione e un’unità di controllo SBS. Lo sbilanciamento è espresso come il movimento o la vibrazione del mandrino rilevati dalla macchina rettificatrice da parte del sensore. Il segnale di vibrazione del sensore è inviato all’unità di controllo che filtra il segnale attraverso l’RPM (giri/min). Quando si avvia un ciclo di equilibratura automatica, l’unità di controllo attiva il blocco della valvola perché inietti il liquido nei quadranti della camera attraverso l’ugello, ciò riduce l’ampiezza del segnale di vibrazione in entrata.
The vibration sensor determines the amount of unbalance, while the RPM sensor detects the position of unbalance. The required correction vector is determined by the Control unit and individual quadrant fill amounts are calculated \((V_1 + V_2)\) accordingly. The individual valves in the Valve Block open as commanded by the Control unit and the liquid balance medium is allowed to pass out the corresponding port in the Nozzle under pressure. The Nozzle injects the coolant into the required quadrant(s) in the ring Chamber as a continuous stream. The Chamber grooves help collect the liquid and insure it enters the required quadrant.

Considerazioni ambientali

Il sistema di equilibratura SBS è progettato in modo da correggere dinamicamente gli effetti dannosi dello sbilanciamento della mola sulla qualità della finitura della superficie e sulla geometria del pezzo nonché sulla durata della mola e dei cuscinetti della macchina, ma non corregge altri problemi ambientali. La presente sezione illustra alcuni dei problemi ambientali frequenti che possono influire sulla qualità della rettifica.

Altre sorgenti di vibrazioni

La sorgente più comune di vibrazioni è costituita dal macchinario adiacente. Le rettificatrici devono essere montate su appropriati supporti isolanti se sono adiacenti a macchinari che producono vibrazioni. Altre sorgenti di vibrazioni possono essere componenti montati sulla macchina, come pompe, motori, comandi, ecc.

Il sistema di equilibratura SBS potrebbe non funzionare con efficienza a causa di alcune vibrazioni esterne. Il sistema filtra il segnale delle vibrazioni generato dalla rettificatrice alla frequenza corrispondente al regime di rotazione del mandrino, per cui vibrazioni generate a frequenze diverse da quella della mola in rotazione non vengono rilevate dal sistema. Nel caso di un macchinario adiacente che funzioni alla stessa frequenza o sia in fase con tale frequenza, il sistema non distingue tra le vibrazioni derivanti dallo sbilanciamento della mola e quelle generate dal macchinario adiacente.

Una prova eccellente delle vibrazioni ambientali consiste nel monitorare il livello delle vibrazioni sulla rettificatrice mentre il mandrino non ruota. Il livello delle vibrazioni deve essere controllato in vari punti sulla rettificatrice, ma in particolare nel punto in cui si fisserà il sensore delle vibrazioni. Durante questa prova tutto il macchinario circostante, compresi eventuali pompe ausiliarie o accessori montati sulla
reattificatrice, devono essere in funzione. Il sistema di equilibratura SBS può agevolare l’esecuzione di questa prova (vedere la sezione Vibrazioni di fondo), ma non può eliminare queste vibrazioni.

Condizioni della macchina

Le condizioni della reattificatrice rappresentano un fattore importante per la determinazione del livello minimo di bilanciamento ottenibile con il sistema di equilibratura SBS. Sia il mandrino sia tutti i componenti del gruppo di trasmissione del moto del mandrino stesso (cioè, cinghie, pulegge, motore, ecc.) devono essere bilanciati. Il sistema di equilibratura può essere utilizzato per determinare facilmente se nella macchina esiste uno sbilanciamento notevole; è sufficiente usare lo stesso metodo descritto sopra per il controllo delle vibrazioni ambientali, ma eseguendo la prova con il mandrino in funzione e in assenza della mola. Il sistema di equilibratura SBS non può eliminare vibrazioni risultanti da problemi nelle condizioni della macchina.

Installazione del sistema

Camera di equilibratura

Il sistema Hydrokompenser permette una grande varietà di implementazioni e in determinate applicazioni supporta il funzionamento della macchina a una velocità massima di 15.000 giri/min: questo lo rende la soluzione perfetta per risolvere problemi di sbilanciamento su tipi di macchine che gli equilibratori meccanici non riescono a risolvere altrettanto bene. Le singole camere dell’Hydrokompenser sono progettate per applicazioni specifiche, con velocità massime di rotazione del mandrino per ciascun tipo. **Attenzione: il superamento della velocità massima del mandrino indicata da Schmitt Industries, Inc. durante la progettazione delle applicazioni potrebbe portare a un pericoloso guasto dei componenti.**

Per qualsiasi applicazione è possibile progettare una camera che può essere aggiunta alla reattificatrice o integrata nella macchina per le applicazioni OEM. Pertanto, il presente manuale non può coprire tutti i metodi di fissaggio delle camere alle macchine. Tuttavia, in comune hanno tutti una semplice installazione sulla reattificatrice mediante diversi bulloni e un foro pilota per il corretto allineamento. I dettagli saranno forniti nei disegni di progettazione.

Blocco della valvola

Il blocco della valvola va montato su una parte pulita della macchina all’esterno della zona di spruzzatura del refrigerante e il più vicino possibile all’ugello, solitamente a una distanza di 2,5 metri (8 piedi). Questo corrisponde alla lunghezza standard del manicotto fissato all’ugello. Su richiesta sono disponibili delle lunghezze speciali. I dettagli saranno forniti nei disegni di progettazione. Il blocco della valvola comprende un regolatore della pressione del fluido e un filtro del liquido per rimuovere le particelle dal refrigerante e dagli altri liquidi da utilizzare come mezzo di equilibratura.
Installazione e allineamento dell’ugello

L’ugello va montato su una parte non rotante della macchina in modo che le quattro porte dell’ugello si allineino e siano direttamente rivolte sui quattro solchi per il liquido della camera di equilibratura. Gli ugelli arrotondati sono venduti con una caratteristica di allineamento per agevolare l’individuazione della posizione corretta, mentre gli ugelli piatti (rettangolari) si basano su un’attenta misurazione per l’individuazione della posizione. I dettagli saranno forniti nei disegni di progettazione.

L’allineamento degli ugelli è fondamentale perché determina la velocità e l’accuratezza del processo di equilibratura. Per un corretto funzionamento, gli ugelli devono trovarsi a una distanza massima di 1-3 mm dalla faccia della camera.

Per ottenere un migliore fissaggio alla macchina, utilizzare una staffa semplice delle dimensioni corrette per tenere il blocco dell’ugello nella posizione richiesta durante il funzionamento della macchina. Quando è necessario, la forma della staffa deve consentire di eseguire delle regolazioni di finitura in termini di distanza e allineamento dell’ugello. Poiché i requisiti di montaggio dipendono dal formato della macchina e dalle preferenze del cliente, quest’ultimo dovrebbe fornire gli utensili e la staffa necessari per il fissaggio dell’ugello. SBS fornirà i servizi di progettazione e produzione ai clienti interessati.

Dopo aver installato e collegato correttamente il blocco dell’ugello al blocco della valvola, impostare la pressione utilizzando il regolatore di pressione sul blocco della valvola. Regolare il getto di refrigerante che esce dagli ugelli in modo che venga deviato dopo 0,5 m (1,5 piedi). Se si utilizza un refrigerante a base d’acqua, dovrebbe corrispondere a una pressione di 0,5-1,5 bar (7-21 psi), in base alla distanza tra il blocco della valvola e il blocco dell’ugello. Se si utilizza l’olio, deve corrispondere a una pressione di 1-4 bar (14-58 psi).

Sensore RPM

Il sensore RPM è un sensore di prossimità che è attivato da un elemento rotante della macchina. Alcuni ugelli sono progettati per contenere un sensore RPM e sono attivati da un piccolo foro praticato nella camera di equilibratura. Altre applicazioni richiedono un sensore RPM separato che può trovarsi all’estremità della...
trasmissione o all’estremità della mola del mandrino. Per attivare il sensore RPM, si consiglia un piccolo foro del diametro di 5 mm e profondo 3 mm.

Unità di comando SBS

L’unità di comando SBS deve essere fissata in un punto che consenta all’operatore della macchina di guardare il display dell’unità stessa. È disponibile un’ampia gamma di viteria per l’installazione su superfici orizzontali o su rack. All’unità di comando devono essere collegati vari cavi: il cavo del sensore delle vibrazioni e quello dell’equilibratore, il cavo di alimentazione e i cavi di interfaccia del контролlore della macchina selezionato (vedere lo schema *Connessione del sistema*).

Posizione del sensore delle vibrazioni

Il sensore delle vibrazioni può essere fissato alla rettificatrice mediante il supporto magnetico fornito o in permanenza con prigionieri. Il supporto magnetico deve essere adoperato durante l’avvio iniziale del sistema finché non si individua sulla rettificatrice un punto adatto per fissare il sensore in permanenza, mediante prigionieri. Quando si fissa il sensore mediante prigionieri, nel punto di fissaggio si deve collocare un elemento piano lavorato alla macchina.

La posizione e l’installazione del sensore sono cruciali ai fini del corretto funzionamento del sistema di equilibratura SBS. A causa delle diverse caratteristiche di modelli diversi della macchina, la posizione del sensore delle vibrazioni dipende dal modello di macchina. Esistono due principi generali che facilitano l’individuazione dell’appropriato punto di fissaggio del sensore alla rettificatrice.

1. **Collocazione del sensore nella stessa direzione dell’asse tra la mola e il pezzo.** Il punto migliore da cui iniziare è una superficie piana lavorata alla macchina sulla testa portamandrino sopra il cuscinetto più vicino alla mola e perpendicolare all’asse del mandrino. Per la maggior parte delle rettificatrici cilindriche è preferibile una superficie di fissaggio verticale, poiché il sensore viene a trovarsi in linea con la mola e il pezzo. Per lo stesso motivo, sulle rettificatrici in piano e sulle rettificatrici creep-feed in genere è più adatta una superficie di fissaggio orizzontale. Sebbene l’equilibratore possa essere fissato all’estremità della macchina più vicina alla mola o alla puleggia, il sensore deve essere allineato sempre all’estremità della macchina più vicina alla mola.

2. **Collocare il sensore su una parte rigida della struttura della macchina, dove le vibrazioni del mandrino vengono trasmesse con precisione.** In alcune macchine, la copertura di sicurezza della mola può essere adatta al fissaggio del sensore se è sufficientemente pesante e collegata rigidamente alla testa portamandrino. Il sistema di equilibratura dipende dai segnali inviati dal sensore delle vibrazioni per visualizzare accuratamente l’attuale livello delle vibrazioni nelle unità picco-picco e per bilanciare la mola. Il sistema impiega filtri a banda stretta che impediscono la rilevazione di vibrazioni a frequenze diverse da quelle del mandrino. Tuttavia, nelle applicazioni in cui i componenti del motore o di un’altra macchina funzionano alla stessa velocità o frequenza del mandrino, si possono generare vibrazioni interferenti. Sperimentando con attenzione la posizione del sensore si possono ridurre al minimo le sorgenti di interferenza.
Istruzioni per l’uso dell’unità di comando

Il sistema di equilibratura SBS può essere configurato facilmente per le particolari necessità delle operazioni di rettifica da eseguire. Segue una descrizione generale delle funzioni di regolazione e interfaccia dell’unità di comando del sistema di equilibratura SBS.

Comandi sul pannello anteriore

La figura qui sopra mostra i comandi e gli indicatori sul pannello anteriore dell’unità di comando, descritti di seguito:

1) ON/OFF. È il pulsante di accensione del sistema. Quando si accende il sistema, si attiva una sequenza di avvio sul display e il LED verde a sinistra del pulsante si illumina. Premendo di nuovo il pulsante ON/OFF si porta l’unità nella modalità di standby e il LED verde lampeggia, indicando che l’unità di comando è alimentata ma inattiva.

2) CANCELLA. Premendo questo pulsante si annulla l’operazione in corso oppure l’ultima selezione o immissione eseguita. Inoltre si cancellano eventuali messaggi di errore visualizzati.

3) DISPLAY A CRISTALLI LIQUIDI. Il display non è a schermo tattile, quindi non premere lo schermo. Lo schermo serve solo a visualizzare i dati e ad assegnare funzioni agli appositi pulsanti.

4) PULSANTI FUNZIONE. La modalità di funzionamento dell’unità di comando dipende dai quattro pulsanti funzione sulla destra del display. L’area della barra dei menu, a sinistra di questi pulsanti, assegna la funzione corrente a ciascun pulsante. Usare questi pulsanti per eseguire tutte le selezioni operative.

5) LED DI STATO DEGLI SLOT. Un LED a tre colori sul lato sinistro del display mostra lo stato operativo della scheda dell’equilibratore o altre schede di dispositivo inserite in ciascuno dei quattro slot corrispondenti.

Sequenza di avvio sul display

È possibile rimuovere il pannello anteriore dell’unità di comando e fissarlo a distanza mediante un cavo serie SB-43xx. Quando viene accesa, nell’una o nell’altra configurazione, l’unità di comando esegue un autotest che ne definisce lo stato e le impostazioni dei parametri di funzionamento. Vengono quindi visualizzate informazioni per l’operatore successivamente alla sequenza di avvio descritta di seguito:
1) Viene visualizzato il logo dell’azienda e le spie sul pannello anteriore si illuminano per confermare di essere funzionali. Durante questo breve intervallo, è disponibile il pulsante SETUP, che se premuto fa passare l’unità di comando alla modalità di impostazione.

2) Dopo quattro secondi, l’unità visualizza informazioni su ciascuna scheda dell’equilibratore o di dispositivo inserita, indicanti il tipo di dispositivo e dati di identificazione. Per prolungare l’intervallo durante il quale queste informazioni sugli slot rimangono visualizzate, premere uno qualsiasi dei pulsanti funzione mentre sono visualizzate. Ogni volta che si preme uno dei pulsanti si aggiungono sei secondi al tempo di visualizzazione, ottenendo più tempo per leggere le informazioni.

3) Dopo altri due secondi, l’unità visualizza la schermata operativa iniziale dell’unità di comando. L’unità visualizza la schermata di monitoraggio MOSTR TUTTO oppure la schermata operativa principale dello slot di una scheda, a seconda di quale era selezionata quando si è spenta l’ultima volta l’unità.

4) Eventuali condizioni di errore rilevate durante l’autotest vengono visualizzate con “ERRORE - codice” dove codice è il codice di riferimento dell’errore rilevato. Per una descrizione dettagliata dei codici di errore vedere la sezione “Messaggi di errore visualizzati” del presente manuale oppure consultare i manuali aggiuntivi di istruzioni per l’uso del prodotto.

SETUP

All’accensione, premere il pulsante SETUP per andare alla modalità di impostazione. Le schermate di impostazione permettono di selezionare:

1. la lingua dell’interfaccia utente;
2. i parametri Ethernet;
3. l’indirizzo della postazione Profibus (se installata).

Nella modalità di impostazione:

- Premere ENTER per memorizzare le impostazioni visualizzate e/o procedere alla successiva schermata di impostazione.
- Premere CANCELLA per annullare le impostazioni visualizzate ma non ancora memorizzate e/o procedere alla successiva schermata di impostazione.
- Premere AVVIO per annullare le impostazioni non memorizzate, uscire dalla modalità di impostazione e iniziare a usare il sistema.

La prima schermata di impostazione permette di selezionare la lingua dell’interfaccia utente dell’unità di comando. Usare i pulsanti freccia per scorrere le lingue disponibili. La seconda schermata di impostazione permette di selezionare i parametri Ethernet. È possibile eseguire impostazioni manuali o abilitare DHCP per l’impostazione automatica. Usare i pulsanti freccia per scorrere tutti i parametri Ethernet disponibili e usare i pulsanti freccia su e giù per modificare le cifre. La terza schermata permette di selezionare l’indirizzo della postazione Profibus (se installata) e di disattivare la segnalazione degli errori Profibus.

Unità di comando senza pannello anteriore collegato

L’unità di comando può funzionare senza essere collegata a un display/tastierino fisico. SBS fornisce un software Windows che funziona come un display/tastierino virtuale. L’unica indicazione che l’unità è accesa quando non è collegata a un pannello anteriore fisico è rappresentata dai comandi e menu dell’interfaccia software standard (vedere la sezione Interfaccia software).
Connettori sul pannello posteriore

La seguente figura mostra il pannello posteriore dell’unità di comando; di seguito sono descritti i connettori presenti sul pannello posteriore, comuni a qualsiasi scheda installata nell’unità stessa.

1) **ALIMENTAZIONE.** Spina di alimentazione (è mostrato il modello alimentato a corrente alternata)

 Attenzione. Prima di applicare corrente all’unità di comando, accertarsi che la tensione di alimentazione sia compresa nell’intervallo specificato.

 Modelli con ingresso a corrente alternata: 100-120 V CA, 200-240 V CA, 50-60 Hz.
 Modelli con ingresso a corrente continua: da 21 a 28 V CC, 5,5 A max a 21 V CC.

2) **PORTAFUSIBILI.** Contiene i fusibili della linea di alimentazione. Le unità di comando con ingresso CA sono dotate di due fusibili 5x20 da 3 A a intervento ritardato, mentre le unità di comando con ingresso CC sono dotate di un fusibile 5x20 da 6,3 A.

3) **ETHERNET.** Permette di eseguire una connessione TCP/IP con il dispositivo host, come un controllore CNC.

4) **CONTROLlore USB.** Permette di collegare un’unità flash USB per gli aggiornamenti del firmware. La versione più recente del firmware e istruzioni per l’aggiornamento sono disponibili sul sito web SBS.

5) **DISPOSITIVO USB.** Permette di eseguire una connessione con un altro host USB 2.0, come un controllore CNC.

6) **PROFIBUS.** Permette di eseguire una connessione con un dispositivo host Profibus DP, come un controllore CNC (opzione).

7) **REMOTE.** Questo connettore DB-15 è identico al connettore sul pannello anteriore dell’unità e serve a collegare il cavo opzionale per l’installazione del pannello anteriore a distanza.

8) **SLOT PER DISPOSITIVI.** Sono disponibili slot numerati per l’installazione delle schede dell’equilibratore o schede di altri dispositivi forniti da SBS. Gli slot inutilizzati sono coperti da pannelli vuoti.
Connettori della scheda dell’equilibratore sul pannello posteriore

L’unità di comando viene fornita con una scheda; è possibile acquistarne altre e aggiungerle all’unità stessa come necessario. Ciascuna scheda è dotata di tre connettori sul pannello posteriore dell’unità di comando, identici per qualsiasi scheda dell’equilibratore inserita.

9a) COLLEGAMENTO DI EQUILIBRATURA. Si collega al blocco della valvola.
9b) COLLEGAMENTO DEL SENSORE. Si collega al sensore di vibrazione.
9c) INTERFACCIA HARDWIRE. Connettore DB-25 standard per il collegamento della scheda dell’equilibratore inserita nell’unità di comando al controllore di una rettificatrice. La sezione “Interfaccia hardwire” contiene una descrizione completa di questa interfaccia.

Funzionamento dell’equilibratore

Led di stato degli slot dell’equilibratore

Lo stato relativo alla scheda dell’equilibratore installata viene indicato come segue:

EQUILIBRATURA SOPRA IL LIVELLO CRITICO. Il LED si illumina in ROSSO quando il livello di vibrazioni misurato è maggiore di quello CRITICO impostato dall’utente o il livello RPM supera il livello RPM max critico impostato dall’utente. Il LED lampeggia mentre il sistema esegue un’equilibratura automatica.

EQUILIBRATURA SOPRA IL LIVELLO DI TOLLERANZA. Il LED si illumina in GIALLO quando il livello di vibrazioni misurato è maggiore di quello di TOLLERANZA selezionato dall’utente. Il LED lampeggia mentre il sistema esegue un’equilibratura automatica.

EQUILIBRATURA SOTTO IL LIVELLO DI TOLLERANZA. Il LED si illumina in VERDE quando il livello di vibrazioni misurato è minore o uguale a quello di TOLLERANZA selezionato dall’utente. Il LED lampeggia mentre il sistema esegue un’equilibratura automatica.

Elementi della schermata principale dell’equilibratore

I seguenti elementi compaiono sulla schermata principale della scheda dell’equilibratore.

a) BARRA DEI MENU. Il lato destro del display serve ad assegnare funzioni ai quattro pulsanti corrispondenti a destra dello schermo. Durante i cicli di equilibratura e generazione del grafico, in quest’area del display compare l’icona di una clessidra animata per indicare il loro avanzamento.
I pulsanti funzione sono definiti come segue per la schermata principale di ciascuna scheda dell’equilibratore. Vedere la Mappa dei pulsanti funzione per una panoramica.

MENU – Premendo questo pulsante si visualizza un elenco di menu con parametri di funzionamento selezionabili e altre funzioni dell’unità di comando.

MOSTR TUTTO – Visualizza in una sola schermata lo stato di tutte le schede dell’equilibratore o altre schede installate.

Premendo CANCELLA dalla schermata MOSTR TUTTO si visualizza una schermata “Stato sistema” che mostra tutti i parametri Ethernet correnti dell’unità di comando. Premendo un pulsante qualsiasi da questa schermata si visualizza una schermata “Versioni firmware” che mostra i dettagli delle versioni di tutti i dispositivi installati nell’unità di comando. Premendo un pulsante qualsiasi da questa schermata si ritorna alla schermata MOSTR TUTTO.

MAN. – Attiva la modalità di equilibratura manuale, che consente di posizionare i due pesi tarati dell’equilibratore (M1 o M2). Ciascun peso può essere spostato nell’una o nell’altra direzione mediante le frecce avanti e indietro; queste due frecce sono disponibili solo nella modalità di equilibratura manuale.

AUTO - Inizia un ciclo di equilibratura automatica. Premendo CANCELLA si interrompe il ciclo di equilibratura automatica (vedere la sezione **Equilibratura automatica**).

b) **LIVELLO DI VIBRAZIONI.** Indica il livello misurato delle vibrazioni della rettificatrice in unità di spostamento, micron o millipollici (mils), oppure di velocità, millimetri al secondo o mils al secondo. Le unità di misura visualizzate sono selezionabile dal menu.

c) **STATO.** Indica lo stato attuale della scheda dell’equilibratore selezionata.

d) **TARGHETTA DELLA SCHERMATA.** Sul lato sinistro del display sono visualizzate targhette per ciascuna scheda di dispositivo installata. La targhetta aperta indica quale scheda di dispositivo è attualmente selezionata. Nella figura, è selezionata la scheda inserita nello slot n. 1, e una targhetta chiusa indica un’altra scheda inserita nello slot n. 2. Queste targhette si allineano con i quattro LED di stato delle schede di dispositivo sulla sinistra del display.

e) **GIRI AL MINUTO.** Visualizza la velocità di rotazione del mandrino, in RPM (giri/min), misurata dall’equilibratore. Questa sezione del display indica anche la frequenza RPM durante una prova di vibrazioni con filtro manuale.

f) **ETICHETTA DI IDENTIFICAZIONE.** Il bordo superiore del display identifica il nome, selezionabile, della scheda di dispositivo attualmente selezionato e la posizione corrente nella struttura dei menu.

g) **GRAFICO A BARRE.** Mostra il livello di vibrazioni misurato, rispetto ai livelli LIMITE, di TOLLERANZA e CRITICO.

Impostazioni del MENU

Nota: tutte le voci di menu vanno impostate indipendentemente per ciascuna scheda dell’equilibratore o di altro dispositivo inserita.

Premere il pulsante MENU per visualizzare le voci di menu descritte di seguito. Il menu offre accesso alle impostazioni del sistema per ciascuna scheda dell’equilibratore e per eseguire determinate funzioni opzionali. Usare i pulsanti freccia su e giù per passare da una voce di menu all’altra. Premere ENTER per accedere alla voce di menu selezionata. Premere ESCI o CANCELLA per uscire dal Menu e ritornare alla schermata principale della scheda.
Impostazioni equilibratura

Usare il pulsante freccia indietro per spostare il cursore da una cifra alla successiva. Usare i pulsanti freccia su e giù per aumentare o diminuire il valore della cifra selezionata. Premere il pulsante ENTER per memorizzare eventuali modifiche e passare all’impostazione successiva di equilibratura. Premendo CANCELLA si ritorna al menu. Le seguenti tre impostazioni di equilibratura vengono visualizzate consecutivamente.

- **Livello di equilibratura LIMITE.** Rappresenta il limite inferiore che l’equilibratore cerca di conseguire durante un ciclo di equilibratura automatica. Questa valore deve essere impostato a 0,2 micron sopra il livello delle vibrazioni di fondo.

- **Livello di TOLLERANZA.** Rappresenta il limite superiore dell’intervallo di equilibratura accettabile. Se questo livello viene superato, si genera una condizione di errore Equilibratura fuori tolleranza (BOT, Balance Out of Tolerance). Questo errore segnala all’operatore o al controllore della macchina che questa deve essere riequilibrata. Questo livello deve essere determinato in base a considerazioni sul processo. Raramente deve essere minore di 1 micron sopra il livello limite.

- **Livello CRITICO.** Questo livello può essere impostato a un valore che fornisca un avviso secondario di condizione estremamente fuori equilibratura, che potrebbe causare danni alla rettificatrice o compromettere il processo. Se questo livello viene superato, si genera una condizione di errore Equilibratura fuori tolleranza critica (BOT2). Questo errore segnala all’operatore o al controllore della macchina che questa deve essere arrestata. Questo stesso errore può essere causato anche da un numero di giri al minuto eccessivo (vedere RPM critici).

ROTAZIONE DELLA MOLA/DIREZIONE DELLA CAMERA: imposta la direzione relativa in cui i quadranti della camera aumentano di numero sulla macchina in relazione alla direzione di rotazione della ruota. I quadranti della camera sono numerati da 1 a 4, 1 è il quadrante collegato al solco del coperchio della camera dal diametro più piccolo, mentre 4 è il quadrante collegato al solco del coperchio della camera dal diametro più grande. Il sistema deve sapere se la direzione verso cui questi quadranti aumentano è **uguale** o **contraria** alla direzione di rotazione della mola. Il sistema può stabilirlo automaticamente, ma per farlo sono necessarie altre iniezioni di liquido. Poiché la capacità della camera è fissa, una volta riempita va svuotata prima di poter eseguire un’ulteriore equilibratura. Perciò, in situazioni in cui la relazione della direzione rimane costante, l’identificazione automatica della direzione non è desiderabile. Sono disponibili le quattro impostazioni seguenti.

- **Automatic Always (Sempre automatica):** a ogni operazione di equilibratura, la direzione sarà stabilita automaticamente dall’iniezione in ciascun quadrante della camera. Questa impostazione può essere utile nel caso in cui il mandrino oscilli o cambi direzione in altro modo.

- **Automatic Once (Automatica una volta):** al primo ciclo di equilibratura dopo aver selezionato questa opzione, il sistema stabilisce automaticamente la direzione mediante l’iniezione in ciascun quadrante della camera e ne conserverà il risultato.

- **Same (Uguale):** questa impostazione permette all’operatore di impostare la direzione come SAME (UGUALE) senza eseguire il ciclo di autodeterminazione.

![Diagram of rotation and direction of camera]

Direzione della camera mostrata CONTRARIA
Opposite (Contraria): questa impostazione permette all’operatore di impostare la direzione come OPPOSITE (CONTRARIA) senza eseguire il ciclo di autodeterminazione.

Unità vibrazione
Premere il pulsante corrispondente per selezionare una delle unità di misura delle vibrazioni, disponibili in termini di spostamento o velocità e come unità anglosassoni o metriche. Le unità correntemente selezionate sono evidenziate sullo schermo. Eseguita questa selezione, il display cambia per consentire di usare i pulsanti freccia su e giù per impostare la risoluzione. Premere ENTER per memorizzare l’impostazione selezionata. Quando si cambiano le unità di misura delle vibrazioni in metriche o anglosassoni, viene convertito il valore numerico impostato per i livelli Limite, di Tolleranza o Critico. Attenzione – Selezionando per le unità di misura spostamento o velocità non si modificano questi valori numerici, poiché non è possibile alcuna conversione diretta. In questo caso è necessario rivedere e modificare le impostazioni del limite selezionando un numero appropriato.

Vel. equilibratura
Questa impostazione determina il tempo necessario per eseguire un ciclo di equilibratura automatica. Per la maggior parte delle applicazioni, la corretta impostazione è Normale. Il valore predefinito in fabbrica è Cauto, per assicurare l’equilibratura di tutte le macchine.

- CAUTO – Impostazione 1. Questa impostazione regola i pesi equilibratori secondo una modalità di equilibratura graduale più lenta. È utile soprattutto sulle rettificatrici ad alta velocità o altre macchine in cui un piccolo movimento dei pesi equilibratori produce variazioni notevoli del livello di vibrazioni.
- AGGRESSIVO – Impostazione 2. Questa impostazione attiva la modalità di equilibratura più veloce. È utile soprattutto sulle macchine funzionanti a basse velocità e con mole di grandi dimensioni.
- NORMALE – Impostazione 3. Questa impostazione utilizza una combinazione di una routine di equilibratura veloce finché il livello delle vibrazioni non raggiunge 1,0 micron, quindi passa automaticamente a una routine più lenta per l’equilibratura di precisione.

Grafico vibrazioni
Questa funzione permette di eseguire una scansione dello spettro delle vibrazioni in un intervallo RPM selezionato. L’operazione dura 10-20 secondi e genera sullo schermo un grafico a barre dell’ampiezza delle vibrazioni monitorate in ciascun intervallo RPM. Inoltre produce un elenco, sotto forma di testo, dei primi 20 picchi di vibrazioni rilevati durante la scansione dello spettro. Per i dettagli operativi vedere la sezione “Grafico vibrazioni”.

Preequilibratura
Questa funzione fornisce una procedura dettagliata che assiste l’operatore della macchina nel posizionamento manuale dei pesi equilibratori sulla rettificatrice nei punti adatti a ottenere un’equilibratura approssimata. La funzione può essere utile quando si installa una nuova mola oppure ogni volta che lo sbilanciamento della mola è eccessivo per la funzione di equilibratura automatica. Eseguendo una preequilibratura si elimina la maggior parte dello sbilanciamento della mola, consentendo al sistema di equilibratura di eseguire l’equilibratura di precisione finale e di mantenerla mentre la mola va usurandosi. Per i dettagli operativi vedere la sezione “Preequilibratura”.

Nome scheda
Sullo schermo si usa un’etichetta o un nome selezionabili dall’utente per identificare ciascuna scheda dell’equilibratore. Se l’utente non ha assegnato alcun nome, il nome predefinito per la schermata è SLOT N., dove “n.” è il numero (da 1 a 4) dello slot in cui è inserita la scheda.
Immissioni menu

Questa opzione permette di bloccare l’accesso al menu sul pannello anteriore mediante un codice di sicurezza standard; questa modalità di protezione impedisce che le impostazioni del sistema possano essere modificate fortuitamente. Sullo schermo compare “ABILITATO” quando l’accesso è menu è sbloccato e “PROTETTO” quando l’accesso al menu richiede l’immissione dell’apposito codice. Il codice di accesso standard è **232123**. Immesso il codice e premuto il pulsante ENTER, l’opzione MENU è protetta e per accedere al menu occorre immettere il codice. Viene visualizzato il messaggio ACCESSO MENU PROTETTO per avvisare che il menu è protetto con una password e viene data l’opportunità di immetterla. Se si immette un codice sbagliato si visualizza il messaggio CODICE IMMESSO ERRATO RIPROVA/CANCELLA.

Per disabilitare la protezione del menu, selezionare IMMISSIONI MENU e immettere il codice. La schermata di IMMISSIONI MENU mostra ABILITATO quando la protezione è stata disabilitata.

Sensore RPM

Il sensore di velocità deve essere posizionato correttamente dall’altra parte e in linea con una funzione di azionamento della rotazione sulla macchina. Dopo aver installato tutti i componenti, accendere il controllo SBS. Con il mandrino arrestato, allentare i bulloni di montaggio e spostare il sensore di velocità in modo che tocchi il metallo della faccia di accoppiamento sulla parte che solitamente ruota (ad es., mandrino, supporto della mola, ecc.). Riportare il sensore di velocità nello spazio specificato di 1-3 mm. Il sistema dovrebbe aver riconosciuto e calibrato il sensore di velocità.

Se non è così, selezionare “RPM SENSOR” (SENSORE RPM) dal MENU. Viene visualizzata un’immagine che mostra lo spazio tra il sensore di velocità e la superficie di contatto. Posizionare il sensore di velocità in modo che l’immagine mostri la distanza corretta.

Impostaz. fabbr

Ripristina ai valori predefiniti in fabbrica i parametri selezionabili di IMPOSTAZIONI EQUILIBRATURA, cambia VEL. EQUILIBRATURA in CAUTO e reimposta RPM CRITICI a 0.

RPM critici

Questa due schermate consentono di impostare un limite massimo e uno minimo per i giri al minuto; se i giri al minuto della macchina diventano maggiori o minori, rispettivamente, del limite massimo o minimo, l’unità di comando visualizza una condizione di errore come descritto di seguito.

1) Il LED di stato dello slot si illumina in **ROSSO** se il limite RPM max viene superato.

2) Entrambe le uscite BOT e BOT2 si attivano se il limite RPM max viene superato.

3) L’uscita BOT2 sarà attiva e BOT sarà inattiva se i giri al minuto della macchina scendono sotto il limite RPM minimo.

4) La schermata operativa principale visualizza l’icona di RPM fuori limite, **C+** o **C−**.

Questi limiti sono entrambi cause alternative del fatto che l’uscita BOT2 diventa attiva (vedere Livello critico di equilibratura). L’uscita BOT2 può essere monitorata dal controllore della macchina, e se si desidera può essere utilizzata per fare scattare ulteriori avvisi o interrompere il funzionamento della rettificatrice.

Per impostare l’uno o l’altro limite, usare il pulsante freccia sinistra per selezionare le cifre e i pulsanti freccia su e giù per modificare la cifra selezionata. Premere ENTER per memorizzare l’impostazione e
ritornare alle altre schermate. Per disabilitare l’uno o l’altro livello RPM critici, ridurre il livello impostato a zero.

MODO CNC BOT

Questa opzione regola la modalità di funzionamento di entrambi i relè BOT (Equilibratura fuori tolleranza) e BOT2 (Equilibratura fuori tolleranza critica) durante i cicli di equilibratura automatica. Quando è impostata su “INATTIVO (SB-2500)”, entrambi i relè sono aperti e non in funzione durante un ciclo di equilibratura, tranne quando viene rilevato un errore RPM critici. Questa modalità operativa corrisponde a quella della serie SB-2500 ed è quella predefinita per la serie SB-4500 di unità di comando. Quando è impostata su “ATTIVO (HK-5000)”, entrambi i relè sono in funzione durante un ciclo di equilibratura. Ciascun relè è chiuso se il livello delle vibrazioni supera i limiti impostati (vedere la sezione Grafico temporale del sistema/CNC).

Preparazione all'impostazione dei parametri di funzionamento

Prima di procedere alle seguenti operazioni, accertarsi di comprendere bene le funzioni e le modalità d’uso del pannello anteriore dell’unità di comando, descritte nelle sezioni precedenti.

Vibrazioni di fondo

Per impostare correttamente il sistema è necessario verificare il livello delle vibrazioni di fondo.

Fissare il sensore delle vibrazioni nel punto in cui sarà adoperato durante il funzionamento (vedere la sezione Posizione del sensore delle vibrazioni). Prima di accendere l’unità di comando, installare l’equilibratore, l’unità stessa e tutti i cavi, come indicato nella sezione relativa all’installazione nel presente manuale. Lasciando spenta la rettificatrice, premere il pulsante MAN. e usare i pulsanti freccia per impostare manualmente il filtro delle vibrazioni sul valore RPM operativo della rettificatrice. Annotare questo livello di vibrazioni ambientale misurato con la macchina non funzione.

Inserire tutti i sistemi secondari della macchina (come gli impianti idraulici e i motori), ma non avviarne il mandrino. Il livello di vibrazioni visualizzato con il mandrino non in funzione corrisponde al livello delle vibrazioni di fondo della macchina. Annotare questo livello delle vibrazioni di fondo per farvi riferimento quando si imposteranno i parametri di funzionamento del sistema. Vedere la sezione “Considerazioni ambientali” per una spiegazione delle possibili sorgenti delle vibrazioni di fondo.

Verifica delle dimensioni dell’equilibratore

Usando i pulsanti di azionamento manuale dei motori (i pulsanti freccia sinistra e destra contrassegnati M1 e M2), fare ruotare i pesi dell’equilibratore mentre la macchina funziona a regime. Spostando ciascuno dei due pesi in direzione opposta all’altro, l’operatore deve essere in grado di introdurre più di 3 micron di vibrazioni nella rettificatrice, ma non oltre 30 micron. Se i risultati non sono compresi in questo intervallo, ciò potrebbe indicare che l’equilibratore deve essere ridimensionato per lo specifico impiego. Consultare il fornitore del sistema di equilibratura SBS. Nel frattempo, evitare di fare funzionare la rettificatrice per lunghi periodi con alti livelli di vibrazione.
Impostazione dei parametri di funzionamento

Questa sezione descrive dettagliatamente i parametri di funzionamento dell’unità di comando selezionati dal menu. Per le unità di comando in cui sono inserite più schede dell’equilibratore, selezionare la scheda desiderata e quindi accedere al MENU.

I parametri di funzionamento vengono impostati indipendentemente per ciascuna scheda.

Livello LIMITE dell’equilibratura automatica

Il sistema di equilibratura SBS esegue automaticamente il bilanciamento a un limite inferiore di vibrazioni specificato dall’utente, il LIMITE di equilibratura automatica. Tale Limite corrisponde al bilanciamento ottimale conseguibile in un ciclo di equilibratura automatica ed è stato impostato in fabbrica su uno spostamento di 0,4 micron. Un Limite di equilibratura non superiore a 1,0 micron in genere è considerato adeguato per la maggior parte delle applicazioni. Il Limite deve essere impostato ad **almeno** 0,2 micron sopra il massimo livello di vibrazioni di fondo notato nella sezione “Preparazione all’impostazione dei parametri di funzionamento”. **Quanto più basso si imposta il Limite, tanto più tempo è necessario al sistema per conseguire l’equilibratura.** Può essere necessaria una certa esperienza per determinare il Limite di equilibratura automatica appropriato per una particolare installazione.

NESSUN SISTEMA DI EQUILIBRATURA È IN GRADO DI EQUILIBRARE UNA MOLA A UN VALORE INFERIORE AL LIVELLO DI FONDO. Cercando di impostare il Limite di equilibratura sotto i livelli di fondo si otterranno cicli di equilibratura lunghi o non riusciti. Poiché il livello delle vibrazioni di fondo spesso è causato dalle vibrazioni trasmesse attraverso il pavimento, può cambiare quando si mettono in servizio o fuori servizio macchine adiacenti. **Impostare il Limite di equilibratura durante i periodi in cui il sistema riceverà il livello massimo di vibrazioni trasmesse attraverso il pavimento.**

Per impostare il Limite, selezionare IMPOSTAZIONI EQUILIBRATURA dal menu. Il Limite si imposta usando i pulsanti freccia e quindi premendo ENTER. **Nota:** Per il monitoraggio delle vibrazioni della macchina si possono selezionare unità di misura della velocità; tuttavia, il Limite può essere impostato solo in unità di misura dello spostamento.

Livello di TOLLERANZA dell’equilibratura automatica

Questa impostazione stabilisce per il sistema un limite superiore per le normali vibrazioni del processo. Quando viene raggiunta, questa impostazione causa un’indicazione della necessità di eseguire un’equilibratura automatica. Le indicazioni che compaiono sul pannello anteriore per lo stato di equilibratura sono mostrate nella seguente tabella, mentre un’ulteriore indicazione è fornita tramite le interfacce software e hardware. Il livello di Tolleranza deve essere impostato ad **almeno** 0,2 micron sopra il LIMITE impostato; in genere viene impostato ad almeno 1 micron sopra il LIMITE impostato.
<table>
<thead>
<tr>
<th>Livello di vibrazioni</th>
<th>LED di stato degli slot</th>
<th>Grafico a barre</th>
<th>Messaggio di stato</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sotto il livello di TOLLERANZA</td>
<td>Verde</td>
<td>Verde</td>
<td>BILANCIATO</td>
</tr>
<tr>
<td>Sopra il livello di TOLLERANZA</td>
<td>Giallo</td>
<td>Giallo</td>
<td>EQUILIBRATURA NECESSARIA</td>
</tr>
<tr>
<td>Sopra il livello CRITICO</td>
<td>Rosso</td>
<td>Rosso</td>
<td>CRITICO</td>
</tr>
</tbody>
</table>

Livello CRITICO dell’equilibratura automatica

Questa impostazione stabilisce per il sistema un limite di sicurezza superiore per le vibrazioni. Quando viene raggiunta, causa un’indicazione della necessità critica di eseguire un’equilibratura automatica. Questa indicazione, che compare sul pannello anteriore, è mostrata nella tabella qui sopra, mentre un’ulteriore indicazione è fornita tramite le interfacce software e hardwire. Il livello Critico deve essere impostato ad almeno 0,2 micron sopra la TOLLERANZA impostata.

Visualizzazione del livello di vibrazioni

È possibile selezionare unità di misura anglosassoni o metriche per i livelli di vibrazione della macchina visualizzati dall’unità di comando. L’unità di comando può anche visualizzare il livello di vibrazioni in termini di velocità o spostamento. L’impostazione di fabbrica dello spostamento rispecchia più direttamente il movimento della mola e quindi l’effetto delle vibrazioni sul pezzo. Usare la voce di menu UNITÀ VIBRAZIONE per selezionare l’opzione desiderata.

Selezione della velocità di equilibratura

Questa impostazione del menu seleziona in sequenza ciclica tre impostazioni per la risposta di equilibratura automatica dell’unità di comando. Lo scopo di questa regolazione è massimizzare la velocità e precisione del sistema di equilibratura SBS quando il sistema è installato su rettificatrici di tipo e dimensioni diversi.

Per determinare la corretta impostazione della velocità di equilibratura, è necessario osservare il funzionamento del sistema durante le prime equilibrazioni. Con il sistema installato sulla rettificatrice e con la macchina in funzione, iniziare un ciclo di equilibratura automatica. Verificare che il sistema compia progressi costanti e tempestivi verso un punto di bilanciamento. Sbilanciare il sistema due o tre volte mediante i pulsanti situati sulla schermata della modalità manuale (MAN.). Ogni volta, iniziare un’equilibratura automatica e verificare i risultati, quindi selezionare ciascuna delle altre impostazioni della velocità ed eseguire due o tre ulteriori prove. Un messaggio di errore “Errore I” visualizzato durante questa prova indica che l’impostazione IMPULSI deve essere ripristinata a un valore corrispondente a una velocità inferiore (vedere la sezione *Messaggi di errore visualizzati*). Questa verifica rapida dà una chiara indicazione della corretta impostazione. Il sistema di equilibratura SBS è così messo a punto in base alla rettificatrice.

Equilibratura automatica

Una volta impostati tutti i parametri di funzionamento, l’unità di comando SBS è pronta a eseguire i cicli di equilibratura automatica, che s’iniziano premendo il pulsante AUTO mediante un comando Avvio equilibratura inviato tramite l’interfaccia hardwire o software. È importante sottolineare che il ciclo di equilibratura automatica viene avviato dall’utente, viene eseguito sulla base di una serie di parametri di funzionamento e quindi termina. **Tra i cicli di equilibratura il sistema indica i livelli di vibrazione e il valore RPM ma non inizia un ciclo di equilibratura automatica senza l’invio di un apposito comando.**

L’equilibratura automatica deve essere eseguita con la macchina in funzione e il refrigerante in circolazione. **L’equilibratura automatica non deve essere eseguita mentre la mola è a contatto del pezzo o del ravvivamole.** Il processo di rettifica, ravvivatura o spostamento della testa portamola può introdurre vibrazioni nella macchina non correlate all’equilibratura della mola. Un tentativo di equilibratura durante uno di questi processi non riuscirebbe e avrebbe effetti dannosi sui risultati della rettifica o della ravvivatura. (vedere la sezione grafico temporale del sistema/CNC).
Pre-equilibratura

Preparazione alla pre-equilibratura

La pre-equilibratura serve a equilibrare inizialmente la rettificatrice tramite il posizionamento manuale dei pesi equilibratori sulla mola. In alcuni casi (specialmente nel caso di mole di grandi dimensioni), l’equilibratore potrebbe non avere capacità sufficiente a equilibrare una mola nuova che presenti uno sbilanciamento estremo. In tali casi, il sistema di equilibratura SBS può agevolare il posizionamento manuale dei pesi equilibratori per compensare la maggior parte dello sbilanciamento della mola. L’equilibratura automatica è quindi utilizzabile per regolare l’equilibratura sino alla successiva sostituzione della mola.

1. Affinché si possa eseguire l’equilibratura, la macchina deve essere predisposta per consentire il posizionamento manuale dei pesi equilibratori sulla macchina. Questo risultato può essere ottenuto con uno dei metodi descritti nella sezione “Modo di equilibratura”.

2. Ciascuno dei pesi equilibratori deve essere contrassegnato con un’indicazione della linea passante per il centro (baricentro). Questa linea serve a posizionare ciascun peso equilibratore rispetto al goniometro sulla macchina. I pesi di massa costante da usare devono essere contrassegnati con 1, 2, 3 ecc. per consentirne l’identificazione.

Sulla rettificatrice deve esserci un goniometro preciso che indichi la posizione dei pesi equilibratori. La risoluzione e la precisione del goniometro determineranno la precisione con cui è possibile collocare i pesi equilibratori, il che a sua volta determinerà la precisione con cui è possibile equilibrare la macchina. SBS può fornire goniometri per gli utenti che non ne dispongano. Per i dettagli rivolgersi al rappresentante SBS.

Prima di procedere alla pre-equilibratura, è importante ridurre al minimo l’effetto della camera di equilibratura sull’equilibratura della macchina assicurando che sia svuotata di liquido, affinché solo il nuovo sbilanciamento intrinseco della mola venga corretto durante la pre-equilibratura. Saltando questa fase si limita l’intervallo effettivo di equilibratura del sistema nei cicli successivi di equilibratura automatica.

Iniziare la pre-equilibratura selezionando “Pre-Balance” (“Pre-equilibratura”) dal menu. Compare la schermata di pre-equilibratura, che consente di selezionare le seguenti opzioni.

Questa è la schermata di pre-equilibratura. La schermata a sinistra si riferisce alla modalità di equilibratura a piano singolo, mentre quella di destra si riferisce alla modalità di equilibratura a due piani. Il primo gruppo di elementi visualizzati corrisponde a un singolo piano di equilibratura ed è duplicato nella visualizzazione corrispondente a due piani.
Elementi della schermata di pre-equilibratura per un singolo piano

1. Indicazione del livello di vibrazioni. I valori delle vibrazioni non vengono visualizzati se c’è un errore del sensore delle vibrazioni (sensore assente o in cortocircuito) o se non viene visualizzato alcun valore RPM. Alla destra della sezione del display che mostra le vibrazioni, vengono visualizzate due possibili condizioni di equilibratura:
 a. Livello di tolleranza superato (colore giallo). L’icona lampeggia in giallo se il livello di vibrazioni aumenta oltre il limite di tolleranza di equilibratura selezionato dall’utente.
 b. Equilibratura critica superata (colore giallo). L’icona lampeggia in giallo se il livello di vibrazioni aumenta oltre il limite di equilibratura critica selezionato dall’utente.

2. Grafico a barre delle vibrazioni. Mostra schematicamente il livello di vibrazioni attuale. La scala è lineare tra le impostazioni attuali per il limite di equilibratura e la tolleranza di equilibratura. Tra il livello di tolleranza di equilibratura e il livello critico di equilibratura si applica una scala lineare diversa.

3. Limite di equilibratura. Questa posizione fissa sul grafico indica l’attuale livello impostato per il limite di equilibratura rispetto al livello di vibrazioni misurato.

4. Tolleranza di equilibratura. Questa posizione fissa sul grafico indica l’attuale livello impostato per la tolleranza di equilibratura rispetto al livello di vibrazioni misurato.

5. Livello critico di equilibratura. Questa posizione fissa sul grafico indica l’attuale livello impostato per l’equilibratura critica rispetto al livello di vibrazioni misurato.

6. Numero dello slot. Identifica il piano dell’equilibratore mediante il numero dello slot per scheda (1-4) nell’SB-5500. Nota: per il funzionamento a due piani gli slot 1 e 2, oppure gli slot 3 e 4, devono essere associati. Lo slot attualmente selezionato e attivo mostra l’icona del sensore con il numero dello slot visualizzato in verde. Per selezionare un piano di equilibratura (numero dello slot) alternativo, usare la schermata Show All (Mostra tutto).

Elementi della schermata di pre-equilibratura comuni a due piani

7. Indicazione RPM. I valori del numero di giri al minuto non vengono visualizzati se non c’è segnale in ingresso (il mandrino è stato arrestato o il sensore RPM è assente o in cortocircuito). Se necessario, è possibile impostare un valore RPM manuale (vedere la corrispondente sezione).

8. Indicazione di errore RPM. Compare una delle seguenti icone per indicare condizioni di errore RPM:
a. **C+** - (rossa) È stato superato il valore RPM critico. L'icona lampeggia se il livello RPM è maggiore del valore RPM critico impostato dall'utente.

b. **C−** - (rossa) Non è stato raggiunto il valore RPM minimo. L'icona lampeggia se il livello RPM è minore del valore RPM minimo impostato dall'utente.

c. **G** - (gialla) Non è presente alcun segnale RPM inviato dal sensore.

d. **G** - (gialla) Valore RPM maggiore del limite di funzionamento. L'icona lampeggia se il livello RPM rilevato è maggiore del limite massimo di funzionamento, pari a 30.000 RPM.

e. **G** - (gialla) Valore RPM minore del limite di funzionamento. L'icona lampeggia se il livello RPM rilevato è minore del limite minimo di funzionamento, pari a 300 RPM.

9. **☐** - Inibizione pannello anteriore (Front Panel Inhibit, FPI) attiva (vedere FPI in Interfaccia hardware).

10. **⚠** - Questa icona segnala una condizione di errore esistente (vedere Condizioni di errore) ed è accompagnata dal codice di due lettere dell’errore corrispondente.

Convenzioni per le modifiche e la navigazione

Sono illustrate di seguito le convenzioni in uso nei menu di pre-equilibratura.

- Le impostazioni attualmente salvate sono indicate da un’icona evidenziata con uno sfondo bianco o dal numero visualizzato per la corrispondente impostazione.

- Usare i pulsanti freccia per passare da un’impostazione alla successiva; il contorno giallo indicherà la selezione corrente.

- Premere il pulsante **OK per attivare** l’opzione selezionata. Premere **☒ Cancel (Annulla)** per uscire.

Nella modalità di modifica:

- Uno sfondo evidenziato in giallo mostra l’attuale voce o numero in fase di modifica.

- L’icona OK lampeggia in giallo sul lato sinistro della schermata ogni volta che la selezione corrente è diversa dall’impostazione salvata, indicando che è necessario premere OK per salvare la nuova impostazione. Premere OK per salvare le modifiche o **☒ Cancel** per annullarle e ripristinare i dati precedenti.

- I pulsanti freccia servono a effettuare selezioni in base alle opzioni disponibili nonché a selezionare e modificare numeri. Quando è necessario immettere un numero, il pulsante < permette di selezionare la cifra da modificare (spostando il trattino di sottolineatura). I pulsanti ▹ e ▶ incrementano o decrementano la cifra sottolineata. Tenendo premuto un pulsante freccia si avvia una ripetizione accelerata della pressione del pulsante stesso.
• Premere per uscire dalla schermata di pre-equilibratura e ritornare alla schermata principale dell’equilibratura automatica.

Impostazione della pre-equilibratura

Per la funzione di pre-equilibratura vi sono varie impostazioni selezionabili dall’utente, presenti sotto il pulsante della schermata di pre-equilibratura. Premere il pulsante sulla schermata di pre-equilibratura per accedere a questo menu. Il menu di impostazione si disabilita dopo 1 minuto di inattività e il sistema ritorna alla schermata di pre-equilibratura senza salvare le modifiche. I relè di uscita dell’interfaccia hardwire rimangono attivi durante l’impostazione.

Ciascuna delle seguenti impostazioni viene presentata nel seguente ordine sotto il menu di impostazione.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MENU</td>
<td>Dà accesso a tutte le impostazioni di MENU per il piano di equilibratura selezionato.</td>
</tr>
<tr>
<td></td>
<td>Modo di equilibratura. Ciascuno di tali modi descrive il metodo di fissaggio dei pesi equilibratori da usare sulla macchina.</td>
</tr>
<tr>
<td></td>
<td>🎯 Peso circonferenziale – Un peso di massa variabile viene posizionato a una determinata distanza lungo la circonferenza di un rotore.</td>
</tr>
<tr>
<td></td>
<td>🎯 Peso singolo – Un peso di massa variabile viene posizionato a un determinato angolo.</td>
</tr>
<tr>
<td></td>
<td>🎯 Due pesi – Due pesi di massa costante, uguali vengono posizionati a due angoli opposti.</td>
</tr>
<tr>
<td></td>
<td>🎯 Tre pesi – Tre pesi di massa costante, uguali vengono posizionati a 120 gradi l’uno dall’altro.</td>
</tr>
<tr>
<td></td>
<td>🎯 Posizioni fisse – È disponibile un numero specificato di posizioni di fissaggio ad angoli equidistanti fra di loro (come i dadi di una ruota) per aggiungere pesi di massa variabile.</td>
</tr>
<tr>
<td></td>
<td>Se si seleziona il modo di equilibratura Fixed Position (Posizioni fisse), il lato destro di questa opzione è modificabile, permettendo di selezionare il numero di posizioni di fissaggio di pesi di massa costante disponibili (da 3 a 99). Le posizioni devono essere equidistanti fra di loro secondo una sequenza di 360 gradi e devono essere etichettate in ordine sulla macchina, da 1 al massimo numero disponibile.</td>
</tr>
<tr>
<td>C= 200.0 CM 12#</td>
<td>Se si seleziona il modo di equilibratura circonferenziale (Circumferential Weight), il lato sinistro di questa opzione è modificabile, permettendo di modificare la circonferenza del rotore sulla macchina, lungo la quale va misurata la distanza a cui collocare un peso equilibratore.</td>
</tr>
</tbody>
</table>
Rotazione goniometro. Serve a impostare il senso di rotazione del goniometro ai fini del posizionamento dei pesi equilibratori rispetto al senso di rotazione della mola.
Il senso di rotazione del goniometro corrisponde alla direzione in cui i riferimenti angolari (0°, 90°, 180° ecc.) o i numeri delle posizioni dei pesi (1, 2, 3, 4 ecc.) aumentano.

Il senso di rotazione del mandrino è identico al senso di rotazione del goniometro.

Il senso di rotazione del mandrino è opposto al senso di rotazione del goniometro.

Limite di equilibratura. Questa impostazione è identica all’impostazione AUTO BALANCE LIMIT (LIMITE DI EQUILIBRATURA AUTOMATICA). Il livello di vibrazioni minimo è quello a cui si considera terminato il procedimento di equilibratura.

Procedimento di pre-equilibratura.
Premere **T** dalla schermata di pre-equilibratura per iniziare un procedimento completo di pre-equilibratura. Ciascun ciclo di equilibratura consiste di almeno tre fasi:

1. **Fase iniziale.** Il livello di vibrazioni viene misurato e memorizzato.
2. **Fase di test.** Sulla macchina viene collocato un peso di test per misurarne l’effetto.
3. **Fase della soluzione.** Viene fornita la soluzione di equilibratura. Il peso correttivo viene collocato sulla macchina e i risultati vengono misurati.

Se il livello risultante delle vibrazioni è minore del limite di equilibratura, il procedimento di equilibratura è completato e si ritorna alla schermata principale, mentre se è maggiore del limite di equilibratura, viene fornita una nuova soluzione di equilibratura per correggere lo sbilanciamento residuo. Ogni successiva soluzione di equilibratura costituisce una **fase di regolazione**, ossia un’iterazione della fase di soluzione, eseguita se occorre un’ulteriore regolazione.
Quattro parti di ciascuna fase di pre-equilibratura:

a. Fermare il mandrino. Il sistema indica che il mandrino deve essere arrestato.

b. Applicare i pesi. Arrestato il mandrino, l’operatore deve configurare i pesi seguendo le istruzioni.

c. Avviare il mandrino. Il mandrino deve essere messo in moto.

d. Misurare. È possibile misurare le vibrazioni per calcolare la fase successiva.

Queste informazioni vengono memorizzate anche se il sistema viene spento e riacceso. I relè di uscita dell’interfaccia hardware rimangono attivi durante le operazioni di equilibratura. Tranne laddove notato, il pulsante \[\text{Cancel (Annulla)}\] arretra il procedimento di equilibratura e riporta alla schermata principale.

\(\text{\textbf{Equilibratura con sola regolazione}}\)

Premere il pulsante \(\text{\textbullet}\) dalla schermata di pre-equilibratura per avviare un procedimento di equilibratura con sola regolazione, nel quale vengono saltate le fasi iniziali e di test, iniziando dalla fase della soluzione. Questa opzione è disponibile solo se il sistema SBS ha memorizzato i risultati di una fase iniziale e di una fase di test completate in precedenza.

Le prime due fasi del ciclo di pre-equilibratura (iniziale e di test) consentono al sistema SBS di determinare e memorizzare informazioni essenziali sulla condizioni della rettificatrice e come eventuali modifiche dei pesi equilibratori influiranno sull’equilibratura della macchina. Presumendo che le condizioni della macchina (RPM, dimensioni della mola, ecc.) non cambino, le successive operazioni di equilibratura possono essere compiute senza bisogno di rieizzare queste due fasi. Se le condizioni della macchina invece cambiano, l’esecuzione delle operazioni di equilibratura sulla base dei risultati memorizzati delle fasi iniziale e di test produrrebbe risultati imprecisi.

L’equilibratura con sola regolazione è eseguibile ogni volta che il livello di vibrazioni aumenta oltre un condizione di equilibratura soddisfacente.

\(\text{\textbf{Problemi di equilibratura}}\) - Se tentativi successivi di equilibratura con sola regolazione non danno risultati soddisfacenti, significa che le condizioni della macchina sono cambiate o che si è verificato un errore nella collocazione dei pesi (posizioni imprecise o variazioni delle masse). In tal caso, l’operatore deve verificare che l’impostazione del senso di rotazione del goniometro sia ancora precisa, quindi premere \(\text{T}\) per avviare un nuovo procedimento manuale completo di equilibratura.

\(\text{\textbf{NOTA BENE}}\) - Una pre-equilibratura riesce solo se si segue scrupolosamente ciascuna fase del procedimento e ci si accerta che i movimenti dei pesi e le aggiunte siano eseguiti accuratamente. Sia le masse che il posizionamento dei pesi utilizzati determinano la precisione dell’equilibratura ottenuta.
Schermate della cronologia

Consentono di visualizzare fasi del procedimento di pre-equilibratura già complete o anche di rieedere una di queste fasi precedenti. Premere il pulsante ‹ ‹ per accedere alle schermate della cronologia. Quando si visualizzano queste schermate, nell’angolo superiore destro compare una grande “H” (“History” [Cronologia]). Usare quindi i pulsanti ‹ e › per andare indietro o avanti attraverso le fasi di equilibratura (notare che il numero della fase è visualizzato). Quando è possibile ripetere una particolare fase di equilibratura (fase 3 o successiva), compare il pulsante

Fasi di pre-equilibratura

<table>
<thead>
<tr>
<th>Iniziale</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fermare il mandrino - Questa schermata richiede all’operatore di arrestare il mandrino. La corrispondente icona (\text{Stop Spindle}) lampeggia per segnalare che occorre arrestare il mandrino e la schermata rimane visualizzata finché il sistema non rileva che il mandrino è fermo.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Iniziale</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicare i pesi - Dopo che il mandrino si è arrestato, questa schermata mostra all’operatore come posizionare i pesi. Durante la fase iniziale non ci deve essere alcun peso sulla macchina oppure i due o tre pesi ad angolo variabile devono essere spostati nelle posizioni di equilibratura nulla seguendo le istruzioni.</td>
<td></td>
</tr>
</tbody>
</table>

Premere ‹ › per indicare che la macchina è pronta.

<table>
<thead>
<tr>
<th>Iniziale</th>
<th></th>
</tr>
</thead>
</table>
| Avviare il mandrino - Questa schermata indica di avviare il mandrino affinché si possa eseguire una misura del livello di vibrazioni. L’icona \(\text{RPM}\) e la sigla “RPM” lampeggiano entrambe e la schermata rimane visualizzata finché il sistema non rileva che il mandrino ruota a velocità costante, quindi viene visualizzata la schermata di misurazione. La freccia Indietro indica che premendo ‹ ‹ si può accedere alle schermate della cronologia.
Iniziale

Misurare le vibrazioni - Dopo che il valore RPM si è stabilizzato, sullo schermo compare, lampeggiante, la freccia Avanti. Premendo ► ► si memorizza questa misura.

La freccia Indietro indica che premendo ◄ ◄ si può accedere alle schermate della cronologia.

Test

Fermare il mandrino - La corrispondente icona ❌ Stop Spindle lampeggia per segnalare che occorre arrestare il mandrino.

Test

Durante la fase di test, premendo il pulsante Edit (Modifica) (notare l'icona) si visualizza questa schermata, che consente di modificare il valore della massa del peso di test. È possibile anche selezionare le unità di misura del peso: g, oz, lb, kg o none (nessuna).

Al termine delle modifiche, premere OK per salvarle e ritornare alla schermata Apply Weights (Applicare i pesi).
Applicare i pesi - Dopo che il mandrino si è arrestato, questa schermata mostra all’operatore dove posizionare i pesi. Durante questa fase, un peso deve essere collocato nella posizione zero oppure tutti i pesi devono essere spostati nelle posizioni mostrate.
Le schermate illustrate si riferiscono all’equilibratura con tre pesi, ma lo stesso procedimento si applica a quella con due pesi.

Premere ‣ ‣ per indicare che la macchina è pronta.

Avviare il mandrino - L’icona ▼ e la sigla “RPM” lampeggiano entrambe per segnalare che occorre riavviare il mandrino.

La freccia Indietro indica che premendo ◀ ◀ si può accedere alle schermate della cronologia.

Misurare le vibrazioni - Dopo che il valore RPM si è stabilizzato, sullo schermo compare, lampeggiante, la freccia Avanti. Premendo ‣ ‣ si memorizza questa misura.

La freccia Indietro indica che premendo ◀ ◀ si può accedere alle schermate della cronologia.

Fermare il mandrino - La corrispondente icona ❓ Stop Spindle lampeggia per segnalare che occorre arrestare il mandrino.
Applicare i pesi - Il peso deve essere spostato nel punto illustrato e la sua massa deve essere variata come mostrato per ridurre al minimo lo sbilanciamento.

Posizionare i pesi equilibratori sullo stesso raggio del peso di test.

Sono disponibili due modi per visualizzare la soluzione:

Peso aggiuntivo (+)

Lasciare sulla macchina tutti i pesi già presenti e aggiungere solo quello mostrato.

Peso assoluto (=)

Prima rimuovere tutti i pesi di test, quindi posizionare i pesi come mostrato.

Premere per visualizzare alternativamente la schermata della soluzione del peso additivo o quella del peso assoluto (notare l'icona sulla schermata della soluzione).

Applicare i pesi - I pesi devono essere spostati nei punti mostrati per ridurre al minimo lo sbilanciamento.

Premere il pulsante Avanti per indicare che la macchina è pronta.

Avviare il mandrino - L'icona e la sigla “RPM” lampeggiano entrambe per segnalare che occorre riavviare il mandrino.

La freccia Indietro indica che premendo si può accedere alle schermate della cronologia.
Misurare le vibrazioni. Dopo che il valore RPM si è stabilizzato, sullo schermo compare, lampeggiante, la freccia Avanti. Premendo il pulsante Avanti ▶ ▶ si memorizza questa misura.

La freccia Indietro indica che premendo ◀ ◀ si può accedere alle schermate della cronologia.

Se il livello risultante delle vibrazioni è minore del limite di equilibratura ▶ , il procedimento di equilibratura è completato e si ritorna alla schermata principale, mentre se è maggiore del limite di equilibratura, viene fornita una nuova soluzione di equilibratura per correggere lo sbilanciamento residuo.

Ogni successiva soluzione di equilibratura costituisce una fase di regolazione, ossia un’iterazione della fase di soluzione, eseguita se occorre un’ulteriore regolazione. Se si sono apportate modifiche, eseguire un nuovo procedimento manuale completo di equilibratura premendo T.

Se è difficile conseguire la soluzione di equilibratura, potrebbe visualizzarsi una delle seguenti schermate anziché la schermata della soluzione.

La schermata superiore indica che si devono usare pesi più piccoli o più grandi. Premere il pulsante ◀ ◀ per ritornare alle schermate della cronologia per un’opportunità di usare un peso più grande e ripetere la fase di test.

La schermata inferiore indica che i numeri di compensazione sono troppo grandi o piccoli per una visualizzazione precisa e che potrebbe essere necessario modificare le attuali unità di misura dei pesi. Premere ▶ ▶ per ritornare alla schermata Apply Weights (Applicare i pesi) senza apportare alcuna modifica.

Le immagini mostrano suggerimenti miranti a migliorare i risultati incrementando o decrementando il peso e/o modificando il modo di equilibratura fra due e tre pesi.

Premere il pulsante ▶ ▶ per ritornare alla schermata Apply Weights (Applicare i pesi) senza apportare alcuna modifica.
Fasi di pre-equilibratura a due piani

Per semplicità, le fasi di pre-equilibratura precedenti sono mostrate per l’equilibratura a singolo piano. Le fasi di equilibratura a due piani sono identiche, ma le schermate di posizionamento dei pesi e di misurazione delle vibrazioni mostrano informazioni per ciascuno dei due piani: la parte superiore della schermata indica un piano e la parte inferiore indica il secondo piano.

La fase di posizionamento del peso di test è suddivisa in due fasi separate, con il posizionamento di un peso per ciascun piano. La schermata mostra un piano come piano attivo, mentre l’altro piano è in grigio. Completare ciascuno dei posizionamenti del peso in sequenza seguendo le istruzioni.

Posizionamento del peso

<table>
<thead>
<tr>
<th>Piano 1</th>
<th>Piano 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>+15.69°</td>
<td>+15.69°</td>
</tr>
<tr>
<td>Δ = 123°</td>
<td>Δ = 123°</td>
</tr>
</tbody>
</table>

Misurare le vibrazioni

<table>
<thead>
<tr>
<th>Piano 1</th>
<th>Piano 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.243</td>
<td>1.243</td>
</tr>
</tbody>
</table>

Sistema di equilibratura 29
Equilibratura manuale

Il sistema di equilibratura SBS è completamente automatico, ma è anche possibile azionarlo manualmente. La possibilità di iniettare manualmente il liquido nella camera è utile per l’esecuzione di test diagnostici e consente agli operatori di equilibrare manualmente le macchine quando lo desiderano.

Ai pulsanti di equilibratura manuale si accede premendo il pulsante MAN. Se l’equilibratore non riceve alcun segnale RPM, è possibile specificare un RPM manuale utilizzando i pulsanti freccia per impostare il livello e premendo il pulsante ENTER (INVIO). I pulsanti sono etichettati da C1 a C4 e la pressione di un pulsante inietta il liquido nel quadrante designato della camera per la durata della pressione del pulsante. È possibile mettere in funzione solo un pulsante alla volta.

Per eseguire l’equilibratura manuale, iniettare il liquido nei singoli quadranti della camera nella direzione che riduce la lettura della vibrazione del Vibration Display (Display della vibrazione). Per farlo, sono necessari tre passaggi.

Passaggio 2: Eseguire delle brevi iniezioni nel quadrante primario e ripetere finché necessario fino a ottenere il livello di vibrazione minimo. Iniettando nel quadrante contrario, si invertirà qualsiasi superamento del punto minimo.

Passaggio 3: Iniettare delle brevi raffiche nel quadrante adiacente finché non si raggiunge un nuovo minimo. Iniettando nel quadrante contrario, si invertirà qualsiasi superamento del punto minimo.

Qualsiasi cambiamento del livello di vibrazione della macchina rallenterà l’iniezione di liquido di uno o due secondi. Ciò è dovuto a un “effetto di assestamento” della macchina e del liquido nella camera. Se la direzione corretta del movimento di vibrazione non è subito chiara, oppure se il livello di vibrazione è basso (massimo 2.0 micron), qualsiasi iniezione di liquido va eseguita in piccoli incrementi con un ritardo di due secondi tra di essi, al fine di valutare l’effetto di ciascuna iniezione.

Filtro manuale RPM

Il sistema è impiegabile anche come strumento di analisi e misurazione delle vibrazioni. Il filtro delle frequenze di vibrazione di cui è dotata l’unità di comando è regolabile manualmente da 300 a 30.000 RPM (giri/min) con incrementi di 1 RPM. L’unità di comando può così funzionare indipendentemente dall’equilibratore e misurare livelli di vibrazione che si generano a frequenze diverse.

Per impostare il filtro manuale, scollegare il cavo a 12 contatti dell’equilibratore dall’unità di comando per eliminare qualsiasi segnale RPM in ingresso. Per passare alla modalità manuale, premere il pulsante MAN sulla schermata principale dell’equilibratore. Impostare la frequenza RPM desiderata per il filtro manuale usando il pulsante freccia sinistra per selezionare le cifre e i pulsanti freccia su e giù per modificare la cifra selezionata. Premere ENTER per visualizzare il livello di vibrazioni al valore RPM selezionato. Se si desidera, è possibile regolare il livello del filtro manuale per visualizzare i livelli di vibrazione ad altre frequenze. È possibile anche eseguire un’analisi completa di tutte le frequenze di interesse mediante la funzione Grafico vibrazioni.
Grafico vibrazioni

Questa funzione esegue una scansione dello spettro delle vibrazioni in un intervallo RPM selezionato e visualizza i risultati sotto forma di un grafico. Può essere utile per diagnosticare vibrazioni indotte da condizioni della macchina o per rilevare problemi ambientali che potrebbero influire negativamente sul processo di rettifica. L’intervallo RPM da valutare dipende dalla macchina e dal processo. È necessario determinare il valore RPM minimo e massimo della rettificatrice. L’intervallo di valutazione suggerito va da 0,4 x (RPM min) a 2,0 x (RPM max); include tutte le frequenze le cui armoniche possono influire sull’intervallo RPM operativo. Inoltre, si può utilizzare un intervallo ampio per identificare un’area di interesse e quindi ottenere informazioni più dettagliate con un grafico più stretto generato per l’intervallo RPM di interesse.

GAMMA RPM – Selezionare GRAFICO VIBRAZIONI dal menu, quindi selezionare GAMMA RPM. Gamma RPM è l’intervallo di frequenze che sarà valutato durante la scansione dello spettro. Usare i pulsanti freccia per impostare il limite inferiore della gamma RPM, premere ENTER per memorizzare il valore e quindi immettere nello stesso modo il limite superiore dell’intervallo. Quando si imposta la gamma RPM, usare i pulsanti freccia su e giù per aumentare o diminuire il valore e il pulsante freccia sinistra per spostare il cursore sulla cifra desiderata.

AVVIO – Questo comando avvia la scansione dello spettro nella gamma RPM selezionata. L’icona della clessidra ruotante, sul lato destro del display, indica che l’unità di comando sta eseguendo la scansione. Durante questo processo tutte le coppie di livello di vibrazioni e RPM vengono inviate all’interfaccia software in formato ASCII. Al termine della scansione, compare il grafico della frequenza risultante. Un grafico non cancellato viene visualizzato a larghezza intera, mentre eventuali grafici cancellati hanno meno punti e sono visualizzati con una larghezza inferiore. La scala verticale è lineare e basata sul valore di picco, visualizzato sulla parte superiore del grafico, mentre la scala orizzontale è logaritmica. La frequenza di picco è rappresentata da una linea bianca.

1) VEDI DATI. Premere questo pulsante per visualizzare un elenco dei valori di vibrazione di picco. Si tratta dei primi 20 (o meno) valori registrati nell’intervallo selezionato. Premendo il pulsante VIBR/RPM di questa schermata si ordinano i valori per livello di vibrazioni o RPM. I pulsanti freccia servono a scorrere su o giù i valori. Il pulsante VEDI GRAFI riporta alla schermata che mostra l’ultimo grafico registrato.

2) TRASM DATI. Premere questo pulsante per esportare i valori di picco e i livelli RPM corrispondenti tramite l’interfaccia software in formato ASCII. Queste informazioni possono essere acquisite e utilizzate come necessario.

3) SETUP GRAFI. Questo pulsante riporta alla schermata di impostazione per generare un grafico delle vibrazioni, in cui si possono immettere impostazioni RPM alternative o uscire dalla procedura di generazione del grafico premendo il pulsante ESCI.
Interfaccia hardwire

L’interfacciamento del sistema di equilibratura SBS con un controllore CNC o PLC della macchina è supportato tramite un’interfaccia hardwire o software. L’interfaccia hardwire è disponibile tramite un connettore DB-25 standard situato sul pannello posteriore di ciascuna scheda dell’equilibratore, mentre l’interfaccia software è disponibile tramite i connettori USB o Ethernet, comuni all’intera unità di comando. A causa delle molte possibili variazioni e configurazioni del cablaggio necessario per una tale interfaccia, l’operatore deve fornire il cavo necessario.

Quando si progetta un’interfaccia per il sistema SBS, è importante tenere presente che il controllore della rettificatrice deve azionare il sistema SBS. Il sistema SBS non è in grado di regolare il funzionamento della rettificatrice.

Leggere attentamente il presente manuale prima di procedere a interfacciare il sistema SBS con il controllore di qualsiasi macchina. Le sezioni che descrivono l’interfaccia di altri prodotti SBS installabile nell’unità di comando SBS sono riportate separatamente nei manuali aggiuntivi di istruzioni per l’uso di tali prodotti.

Descrizione generale dell’interfaccia hardwire

L’interfaccia hardwire consiste di tre sezioni: alimentazione, ingressi e uscite.

L’alimentazione dell’interfaccia serve esclusivamente per l’uso con gli ingressi dell’interfaccia stessa; consiste di tre pin comuni e un pin di uscita. I pin comuni sono collegati internamente allo chassis e alla massa di terra. L’uscita può applicare una corrente massima di 30 mA a circa +15 V CC. Qualsiasi circuito di alimentazione esterno adoperato per l’I/O dell’interfaccia deve essere un circuito di sicurezza a tensione molto bassa (SELV).

Gli ingressi offrono robustezza e immunità al rumore. Gli ingressi vengono attivati quando sono portati a un livello alto, tramite una connessione con l’uscita del circuito di alimentazione dell’interfaccia hardwire SB-5500 o con un segnale fornito dal cliente. Per attivare gli ingressi occorrono almeno 8 mA a una tensione compresa tra 10 e 26 volt CA o +CC, rispetto al terminale comune del circuito di alimentazione dell’interfaccia hardwire SB-5500. I pin comuni sono collegati internamente allo chassis e alla massa di terra. Gli ingressi vengono disattivati rimuovendo la connessione con il segnale fornito dal cliente o con il circuito di alimentazione.

Le uscite consistono di relè deviatori unipolari a stato solido isolati otticamente, utilizzabili per applicare un segnale di uscita tramite la connessione a un generatore di tensione fornito dal cliente. Le uscite sono isolate elettricamente da tutti gli altri circuiti e hanno tensione nominale di 24 V CC o CA e corrente massima di 50 mA. I carichi induttivi devono essere protetti contro il flyback sino a 50 V CC.

I tre contatti di un relè deviatore unipolare sono indicati con i termini “normalmente aperto”, “normalmente chiuso” e “comune”. Il termine “comune” in questo senso non implica connessione ai terminali comuni di un alimentatore. Il termine “ritorno” è utilizzato qui sotto per indicare il contatto comune dell’uscita.
Nomi e funzioni dei pin di ingresso

<table>
<thead>
<tr>
<th>N. pin</th>
<th>Nome</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>SBC</td>
<td>Comando avvio equilibratura – Attivato momentaneamente per iniziare un’operazione di equilibratura automatica. Il fronte di salita di questo segnale avvia l’operazione.</td>
</tr>
<tr>
<td>19</td>
<td>SPB</td>
<td>Comando arresto equilibratura – Quando è attivo, questo ingresso arresta un’operazione di equilibratura automatica in corso e impedisce l’avvio di un’operazione di equilibratura automatica sia dall’interfaccia hardwire sia da quella software. Il pulsante AUTO sul pannello anteriore è ancora funzionale.</td>
</tr>
<tr>
<td>17</td>
<td>FPI</td>
<td>Inibizione pannello anteriore – Quando questo ingresso è attivo, non è possibile eseguire le azioni principali sul tastierino del pannello anteriore. I pulsanti MENU, MAN. e AUTO sono disabilitati. Rimangono abilitati i pulsanti On/Off e Cancel, utilizzabili per arrestare un’operazione di equilibratura automatica. È possibile usare il pulsante MOSTR TUTTO e accedere alla schermata Stato sistema.</td>
</tr>
</tbody>
</table>

Nomi e funzioni dei pin di uscita

<table>
<thead>
<tr>
<th>n. pin</th>
<th>Nome</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>BOT-R, BOT-NA, BOT-NC</td>
<td>Equilibratura fuori tolleranza: contatti di ritorno, normalmente aperti (NA) e normalmente chiusi (NC). Questa uscita è attiva quando 1) il livello di vibrazioni misurato supera la tolleranza impostata dall’operatore, e rimane attiva se il livello di vibrazioni supera la tolleranza critica; 2) inoltre è attiva se i giri al minuto del mandrino superano il livello RPM massimo critico definito dall’operatore, ma non è attiva se i giri al minuto del mandrino scendono sotto il livello RPM minimo critico definito dall’operatore. La funzione di questo relè durante un ciclo di equilibratura automatica è determinata dall’impostazione MODO CNC BOT.</td>
</tr>
<tr>
<td>15</td>
<td>BOT2-R, BOT2-NA, BOT2-NC</td>
<td>Equilibratura fuori tolleranza 2: contatti di ritorno, normalmente aperti (NA) e normalmente chiusi (NC). Questa uscita è attiva quando 1) il livello di vibrazioni misurato supera la tolleranza critica definita dall’operatore, 2) quando il valore RPM del mandrino supera il valore RPM massimo critico definito dall’operatore, o 3) se i giri al minuto del mandrino scendono sotto il livello RPM minimo critico. La funzione di questo relè durante un ciclo di equilibratura automatica è determinata dall’impostazione MODO CNC BOT.</td>
</tr>
<tr>
<td>24</td>
<td>BIP-R, BIP-NA, BIP-NC</td>
<td>Equilibratura in corso: contatti di ritorno, normalmente aperti (NA) e normalmente chiusi (NC). Questa uscita è attiva quando è in corso un’operazione di equilibratura automatica.</td>
</tr>
<tr>
<td>23</td>
<td>FBSI-R, FBSI-NC</td>
<td>Equilibratura non riuscita/sistema inoperativo: contatti di ritorno, normalmente aperti (NA) e normalmente chiusi (NC). Questa uscita è attiva quando il sistema è nella normale modalità di funzionamento, acceso e dopo aver superato l’autotest all’accensione. Viene disseccitato se l’unità di comando è spenta o in standby oppure se si genera una condizione di errore o di guasto.</td>
</tr>
<tr>
<td>6</td>
<td>RPM-R</td>
<td>Questo relè si chiude una volta a ogni rotazione. Il segnale è un’uscita con buffer del segnale RPM generato dall’equilibratore. Non è disponibile se il valore RPM è stato immesso manualmente.</td>
</tr>
</tbody>
</table>
Interfaccia software

Il sistema di equilibratura SBS fornisce un’interfaccia software, tramite Ethernet TCP/IP o USB, che offre la stessa funzionalità di comando dell’interfaccia hardware oltre al monitoraggio dello stato del sistema, all’impostazione del limite di equilibratura automatica e all’analisi dello spettro delle vibrazioni. La seguente descrizione si riferisce a tutti i modelli SB-5500.

Interfacciamento

L’interfaccia software offre un’emulazione di interfaccia seriale che collega l’unità di comando a un computer Windows tramite Ethernet TCP/IP o USB. Nel caso di TCP/IP, usare Telnet dal prompt dei comandi di Windows specificando l’indirizzo IP dell’unità di comando oppure usare HyperTerminal o un software di comunicazione seriale analogo specificando la porta 23 con qualsiasi impostazione della velocità di trasmissione. Quando si collega tramite USB, Windows assegna una porta COM all’unità di comando. Se all’unità di comando SB-5500 non viene assegnata automaticamente una porta COM, sul sito web SBS – www.grindingcontrol.com – è disponibile un driver per l’impostazione delle comunicazioni USB-seriale da parte di Windows. L’assegnazione della porta COM è controllata da Windows e per ciascuna unità di comando SB-5500 rilevata sarà assegnata una porta COM unica. La porta assegnata può essere determinata visualizzando Gestione dispositivi di Windows. Usare HyperTerminal o altro software di comunicazione seriale per interagire con l’unità di comando tramite una connessione USB.

Comandi e risposte del software

Quando si accende l’unità di comando, viene trasmesso il seguente messaggio attraverso l’interfaccia software.

/SB-5500, Copyright (c) 2009, Schmitt Industries, Inc.<CR>
V0.02<CR>

Comandi - Un messaggio preceduto da una cifra da ‘1’ a ‘4’ è un comando o una risposta che si riferisce alla scheda inserita nello slot da 1 a 4, rispettivamente. Un messaggio iniziante con qualsiasi altro carattere si riferisce all’unità di comando del sistema. Gli esempi che seguono utilizzano “1” come numero dello slot della scheda.
Comandi disponibili dall’interfaccia software

Comandi inviati all’unità di comando

<table>
<thead>
<tr>
<th>Comando</th>
<th>Risposta</th>
<th>Significato/esempio:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Interrogazione sullo stato del pannello di controllo</td>
<td><Esc>C<CR></td>
</tr>
<tr>
<td>CI</td>
<td>Il pannello di controllo è inibito</td>
<td>CI<CR></td>
</tr>
<tr>
<td>CE</td>
<td>Il pannello di controllo è abilitato</td>
<td>CE<CR></td>
</tr>
<tr>
<td>CX</td>
<td>Il pannello di controllo non è installato</td>
<td>CX<CR></td>
</tr>
<tr>
<td>KE</td>
<td>Abilitazione pannello di controllo.</td>
<td><Esc>CE<CR></td>
</tr>
<tr>
<td>K</td>
<td>Riscontro dato al comando</td>
<td>K<CR></td>
</tr>
<tr>
<td>CX</td>
<td>Il pannello di controllo non è installato</td>
<td>CX<CR></td>
</tr>
<tr>
<td>CI</td>
<td>Inibizione del pannello di controllo.</td>
<td><Esc>CI<CR></td>
</tr>
<tr>
<td>K</td>
<td>Riscontro dato al comando</td>
<td>K<CR></td>
</tr>
<tr>
<td>Q</td>
<td>Comando non accettato (pannello in uso?)</td>
<td>Q<CR></td>
</tr>
<tr>
<td>CX</td>
<td>Il pannello di controllo non è installato</td>
<td>CX<CR></td>
</tr>
<tr>
<td>V</td>
<td>Richiesta versione (firmware scheda principale)</td>
<td>V<CR></td>
</tr>
<tr>
<td>Vn.nn</td>
<td>Versione firmware</td>
<td>V1.00<CR></td>
</tr>
</tbody>
</table>

Comandi inviati alla scheda nello slot (le schede sono comandate individualmente)

<table>
<thead>
<tr>
<th>Comando</th>
<th>Risposta</th>
<th>Significato/esempio:</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Richiesta del tipo (della scheda nello slot).</td>
<td><Esc>1X<CR></td>
</tr>
<tr>
<td>Xz.zzVn.n [sss]/testo</td>
<td>Risposta della scheda. z.zz indica il tipo di scheda nello slot: 1.02 si riferisce a un equilibratore meccanico, 1.03 a un equilibratore senza contatti, 2.02 a un idroequilibratore, 3.00 a una scheda AEMS e 5.00 a un equilibratore manuale; n.nn indica la revisione del firmware dell’equilibratore, mentre sss è il nome specificato dall’utente per questa scheda. La barra precede un commento che spiega il tipo di scheda.</td>
<td>1X1.02V0.15[NOME]/EQUILIBRATORE MECCANICO<CR></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X0/Nessuna scheda</td>
<td>Nello slot non è installata nessuna scheda.</td>
<td>1X0/Nessuna scheda<CR></td>
</tr>
<tr>
<td>XX/Nessuna risposta</td>
<td>Nello slot è installata una scheda che però non risponde al sistema.</td>
<td>1XX/Nessuna risposta<CR></td>
</tr>
<tr>
<td>BA</td>
<td>Comando interruzione equilibratore.</td>
<td><Esc>2BA<CR></td>
</tr>
</tbody>
</table>

Interrrompi ciclo di equilibratura slot 2.
<table>
<thead>
<tr>
<th>Comando</th>
<th>Risposta</th>
<th>Significato/esempio</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT</td>
<td>Ciclo di equilibratura terminato (se in corso) 2BT<CR></td>
<td></td>
</tr>
<tr>
<td>BS</td>
<td>Comando avvio equilibratore. Questo comando avvia il ciclo di autoequilibratura se le risorse del sistema possono essere acquisite. Premendo il pulsante Cancel sul pannello anteriore si arresta il ciclo. <Esc>1BS<CR> Avvia ciclo di equilibratura slot 1.</td>
<td></td>
</tr>
<tr>
<td>BS</td>
<td>Ciclo di equilibratura avviato 1BS<CR></td>
<td></td>
</tr>
<tr>
<td>BT</td>
<td>Ciclo di equilibratura terminato 1BT<CR></td>
<td></td>
</tr>
<tr>
<td>G[sss],[e ee]]</td>
<td>Genera grafico spettro vibrazioni. Questo comando genera una grafico delle letture delle vibrazioni in funzione del valore RPM delle vibrazioni stesse. Facoltativamente, specificare “sss” come RPM iniziali e “eee” come RPM finali. <Esc>1G500,2000<CR> Avvia programma spettro vibrazioni slot 1. Esegui scansione da 500 a 2000 RPM.</td>
<td></td>
</tr>
<tr>
<td>U=unità</td>
<td>Programma spettro avviato (unità specificate) 1U=UM<CR></td>
<td></td>
</tr>
<tr>
<td>Grrr,vv.vvv</td>
<td>Punto grafico vibrazioni. Viene generata una linea per ciascun valore RPM misurato; rrr è il valore RPM corrente, mentre vv.vvv è il livello delle vibrazioni misurato al valore RPM specificato. 1G500,0.04<CR> 1G550,0.05<CR></td>
<td></td>
</tr>
<tr>
<td>GE</td>
<td>Fine grafico vibrazioni. La routine di generazione del grafico dello spettro delle vibrazioni è terminata. 1GE<CR></td>
<td></td>
</tr>
<tr>
<td>GX</td>
<td>Annulla spettro vibrazioni. <Esc>1GX<CR> Arresta programma spettro vibrazioni slot 1.</td>
<td></td>
</tr>
<tr>
<td>GE</td>
<td>Fine grafico vibrazioni</td>
<td></td>
</tr>
<tr>
<td>L[x.xx,[y. yy],[z.zz]]]</td>
<td>Comando limiti, dove x.xx è il livello di vibrazioni Limite, y.yy è il livello di Tolleranza e z.zz è il livello Critico; tutti i valori sono in micron. Se x.xx non è presente, il livello Limite rimane invariato. Se y.yy non è presente, il livello di Tolleranza rimane invariato. Se z.zz non è presente, il livello di vibrazioni Critico rimane invariato. <Esc>1L<CR> Acquisisci limiti equilibratura slot 1.</td>
<td></td>
</tr>
<tr>
<td>Lx.xx,y.yy, z.zz</td>
<td>Risposta limite di equilibratura (nuovi valori), dove x.xx è il livello Limite, y.yy è il livello di Tolleranza e z.zz è il livello di vibrazioni Critico; tutti i valori sono in micron. 1L0.40,1.20,20.00<CR> <Esc>1L0.08,,15<CR> Imposta per lo slot 1 il livello Limite a 0.08, il livello Critico a 15.00, non modificare il livello di Tolleranza. 1L0.08,1.20,15.00<CR></td>
<td></td>
</tr>
<tr>
<td>P[1</td>
<td>2</td>
<td>3]</td>
</tr>
<tr>
<td>P1</td>
<td>1P1<CR> L’attuale impostazione per Velocità equilibratura è Cauto. <Esc>1P2<CR> Imposta Velocità equilibratura slot 1 su Aggressivo. 1P2<CR> L’attuale impostazione per Velocità equilibratura è Aggressivo.</td>
<td></td>
</tr>
<tr>
<td>R[rrr]</td>
<td>Imposta livello RPM critici; rrr è il nuovo livello RPM critici. Per il livello RPM critici vengono utilizzati i valori 301-30100. Tutti gli altri valori sono interpretati come OFF. <Esc>1R3500<CR> Imposta livello RPM critici slot 1 a 3500 RPM. <Esc>1R0<CR> Disattiva verifica RPM critici slot 1. <Esc>1R<CR> Acquisisci livello RPM critici slot 1</td>
<td></td>
</tr>
<tr>
<td>Comando</td>
<td>Risposta</td>
<td>Significato/esempio</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Rrrr</td>
<td>1R3500<CR></td>
<td>Il livello RPM critici slot 1 è 3500 RPM. Una risposta rrr=300 significa che non è stato impostato nessun limite; il livello RPM critici è OFF. 1R300<CR></td>
</tr>
<tr>
<td>S[C]</td>
<td>Comando richiesta stato. Se ‘C’ è presente, la condizione di errore segnalata in precedenza viene cancellata prima che siano fornite le informazioni sullo stato. <Esc>1S<CR> Informazioni sullo stato dello slot 1.</td>
<td></td>
</tr>
<tr>
<td>S rrr,v.vv, [FBSI,] [BIP,][FPI,] ERR=eee</td>
<td>Risposta stato; rrr è il valore RPM, v.vv è il livello di vibrazioni in micron, FBSI indica equilibratura non riuscita/sistema inoperativo, BIP indica equilibratura in corso e FPI indica che il pannello anteriore è inibito; eee rappresenta le lettere di errore individuali corrispondenti alle condizioni di errore. Se la prima lettera è ‘@’, una condizione di errore richiede la cancellazione (usare il comando SC o premere Clear sul pannello anteriore). 1S 1590,0.23,ERR=@GI<CR> <Esc>1SC<CR> Informazioni sullo stato dello slot 1. 1S 1590,0.24,ERR=G<CR></td>
<td></td>
</tr>
</tbody>
</table>

Sommario del funzionamento del software

La funzionalità dell’interfaccia software del sistema di equilibratura SBS consente di eseguire l’equilibratura e i test di una rettificatrice in modo completamente automatizzato. Per esempio, se si registra lo spettro delle vibrazioni di una macchina nuova, lo si può archiviare per valutare successivamente le condizioni relative dei cuscinetti, l’equilibratura del mandrino e le condizioni della macchina. Le letture del valore RPM e del livello di vibrazioni dalla riga di stato sono utilizzabili per fornire un’indicazione remota delle caratteristiche e della velocità di funzionamento della macchina. Questi dati possono servire a indicare quando occorre sostituire una mola o eseguire altre operazioni di manutenzione.

Interfaccia Profibus DP

Sistema di equilibratura

Avvio Rettificatrice

Mola Equilibrata

<table>
<thead>
<tr>
<th>RELÈ APERTO</th>
<th>RELÈ CHIUSO</th>
</tr>
</thead>
</table>

= = = = = RELÈ APERTO = = = = =

Comando di Equilibratura in Corso

Tra Cicli di Rettificazione

Ciclo di Rettificazione o Rannodatura

Livello Vibrazioni Superiore a Tollernanza

Grafico temporale del sistema/CNC

Accensione

Avvio Rettificatrice

Livello Vibrazioni Superiori a Tollernanza

Grafico delle Vibrazioni alla Frequenza del Mandrino

0,2 micron (minimo consigliato)

Grafico delle Vibrazioni di Fondo

Livello Bot

Livello Bot2

Attendere 2 sec. L’Apertura del Relè

Attendere 5 ms L’Apertura del Relè

Funzionamento Relè Bot/Bot2 durante il Ciclo di Equilibratura sono impostati entrambi dall’opzione di menu modo CNC Bot.

Impostazione Inattiva – il relè si apre quando inizia il ciclo di equilibratura (SB-2500)

Impostazione Attiva – il relè si apre dopo che il livello di vibrazioni è sotto il limite impostato (HK-5000).

Bot Impostato “Attivo”

Bot Impostato “Inattivo”

Segnale SBC

Alternativo SBC

Impostazione Inattiva – il relè si apre quando inizia il ciclo di equilibratura (SB-2500)

Impostazione Attiva – il relè si apre dopo che il livello di vibrazioni è sotto il limite impostato (HK-5000).
Manutenzione del sistema

Manutenzione

Le attività di manutenzione che l’operatore può eseguire sul controllo SBS si limitano alla sostituzione del fusibile della linea. Di seguito sono riportati gli schemi di cablaggio per agevolare le piccole riparazioni o le operazioni di collegamento dei fili. La manutenzione regolare del sistema Hydrokompenser deve comprendere la pulizia periodica e la rimozione di corpi estranei o altri accumuli all’interno della camera di equilibratura. Una volta rimosso il coperchio della camera o ogni volta che si nota una fuoriuscita dalla camera, è necessario pulire completamente le facce di accoppiamento del corpo e del coperchio della camera, quindi è necessario risigillare il perimetro di ciascun quadrante della camera utilizzando un sigillante indurente per guarnizioni del motore. SBS consiglia Loctite 518. È inoltre necessario pulire e sostituire periodicamente il filtro del refrigerante quando si ottura e pulire e lavare periodicamente il blocco della valvola e l’ugello per rimuovere l’accumulo. Se una valvola solenoide si guasta, il cliente può ordinare i ricambi dalla fabbrica e installarli. Se sono necessari altri interventi di assistenza, contattare il produttore dell’Equilibratore manuale SMS o Schmitt Industries Inc.

Schema dei cavi del blocco della valvola – SB-46xx

![Diagrama de conexión de cables del bloque de válvula SB-46xx](attachment:image1)

Schema circuitale del cavo del sensore – SB-14xx

![Diagrama de conexión de cables del sensor SB-14xx](attachment:image2)
Guida alla soluzione dei problemi

Politica di riparazione/restituzione SBS

Consultare questa guida in caso di problemi con il sistema di equilibratura SBS.

1. Se l’unità di controllo di equilibratura visualizza dei messaggi di errore, consultare la sezione Messaggi di errore visualizzati del presente manuale per una spiegazione dei messaggi visualizzati. In caso di necessità, contattare Schmitt Industries per assistenza. **Durante la segnalazione di un problema di manutenzione, indicare il codice dell’errore (lettera) di qualsiasi errore visualizzato.**

2. Se non sono visualizzati messaggi di errore, controllare il sensore di vibrazione. Verificare che il sensore sia saldamente fissato alla macchina, che il suo magnete sia serrato in posizione e che sia correttamente collegato all’unità di controllo. Controllare anche che la posizione del sensore sulla macchina rettificatrice rifletta correttamente l’equilibratura della macchina (**vedere la sezione Posizione del sensore di vibrazione**).

Come controllo finale, sull’unità di controllo impostare l’RPM manualmente alla velocità operativa della rettificatrice e verificare che vi sia un segnale di vibrazione in ingresso. Se durante questo test si riceve una lettura zero dal sensore, restituire il sensore di vibrazione e l’unità di controllo per farli riparare. Per richiedere un numero RMA (autorizzazione alla restituzione dei materiali), contattare Schmitt Industries.

3. Se i sensori di vibrazione e RPM funzionano correttamente, eseguire una verifica dell’integrità del resto del sistema. Questo test va eseguito mentre la macchina è in esecuzione, ma non durante un ciclo di rettifica o di diamantatura. Premere il pulsante MAN. per entrare nella modalità manuale e premere ciascuno dei quattro pulsanti manuali, uno alla volta, per circa 5 secondi. A ogni iniezione di liquido, il sistema dovrebbe registrare un cambiamento di livello di vibrazione visualizzato dall’unità di controllo. Successivamente, iniettare il liquido nel quadrante della camera 1 per 10 secondi, osservare il cambiamento della vibrazione, poi iniettare nel quadrante 3 per lo stesso periodo di tempo. L’iniezione in questi due quadranti dovrebbe produrre un cambiamento uguale e opposto al livello di vibrazione. Eseguire lo stesso
test nei quadranti da 2 a 4. Se i test non producono risultati normali, il sistema ha un problema di manutenzione che il grafico seguente potrebbe aiutare a risolvere.

4 Se la verifica dell’unità di controllo non mostra alcun problema di manutenzione del sistema SBS, cercare degli eventuali problemi ambientali/di applicazione. Il livello di vibrazione di fondo sulla macchina deve essere monitorato durante il funzionamento e l’impostazione del limite di equilibratura deve essere controllata rispetto a questo livello. (consultare la sezione Considerazioni ambientali) (consultare la sezione Impostazione dei parametri di funzionamento).

Se si continua ad avere problemi dopo aver eseguito questa procedura, contattare Schmitt Industries o il fornitore di SBS Balance System per assistenza.

<table>
<thead>
<tr>
<th>Problema</th>
<th>Causa</th>
<th>Rimedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lo sbilanciamento aumenta costantemente in breve tempo</td>
<td>Perdita dalla camera di equilibratura</td>
<td>Sigillare il coperchio della camera</td>
</tr>
<tr>
<td>Durante l’iniezione lo sbilanciamento non cambia o cambia poco</td>
<td>Perdita dalla camera di equilibratura o iniezione scarsa</td>
<td>Regolare il blocco della valvola</td>
</tr>
<tr>
<td>Il circuito idraulico non funziona correttamente</td>
<td></td>
<td>Controllare il circuito idraulico nel modo seguente:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Impostare la modalità manuale</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Modificare il display di sbilanciamento di circa 1 rpm iniettando</td>
</tr>
<tr>
<td></td>
<td></td>
<td>refrigerante ad esempio nella valvola 1 (camera 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Questa procedura richiede circa 10-20 secondi. Mentre si mette in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>funzione la valvola 3 (camera 3), la quantità del display della</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vibrazione deve essere riportata al valore iniziale di base nello</td>
</tr>
<tr>
<td></td>
<td></td>
<td>stesso periodo di tempo.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• La stessa procedura va ripetuta con le valvole 2 e 4 (camere 2 e 4).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Se non è possibile farlo, è necessario attuare le seguenti</td>
</tr>
<tr>
<td></td>
<td></td>
<td>misure:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Controllare o, se necessario, sostituire i collegamenti delle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>valvole 1, 2, 3 e 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Regolare il blocco della valvola correttamente</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Mettere la camera n. 1 di fronte alla valvola di iniezione 1. Se la</td>
</tr>
<tr>
<td></td>
<td></td>
<td>posizione è corretta, il getto di liquido non sarà riflesso.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Regolare la pressione del refrigerante in modo che i getti di liquido</td>
</tr>
<tr>
<td></td>
<td></td>
<td>da tutte le valvole siano deviati dopo circa 1,5 piedi (0,5 m).</td>
</tr>
<tr>
<td>Il sistema non può essere equilibrato al limite di tolleranza</td>
<td>Vibrazioni di interferenza</td>
<td>Equilibrare i gruppi di vibrazione (ad es. motore della trasmissione)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modificare la velocità del possibile secondo mandrino</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modificare la posizione del trasduttore di vibrazione allo stesso livello</td>
</tr>
<tr>
<td>Pressione del refrigerante</td>
<td>Regolare in modo che il flusso dall’ugello sia deviato dopo 0,5 m</td>
<td>(1,5 piedi)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acqua: 7-21 psi (0,5-1,5 bar)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Olio: 14-58 psi (1-4 bar)</td>
</tr>
<tr>
<td>Il circuito idraulico non funziona correttamente</td>
<td></td>
<td>Vedere sopra</td>
</tr>
<tr>
<td>Il trasduttore di pressione è posizionato nel punto sbagliato</td>
<td></td>
<td>Fissare il trasduttore di pressione in un’altra posizione della macchina</td>
</tr>
<tr>
<td>Limite di tolleranza troppo basso</td>
<td></td>
<td>Aumentare il limite di tolleranza</td>
</tr>
</tbody>
</table>

Se si continuano a riscontrare problemi dopo aver seguito questi quattro punti, rivolgersi a Schmitt Industries o al fornitore del sistema di equilibratura SBS per assistenza.

Opzione Test display
È possibile verificare la funzionalità del display all’accensione dell’unità di comando premendo uno dei pulsanti funzione situati sopra “SETUP” e quindi il pulsante “SETUP”. Viene visualizzato il messaggio TEST DISPLAY
e i pulsanti TEST, AVVIO e SETUP. Premendo TEST si invertono le aree di testo chiare e scure. Premendo di
nuovo TEST si visualizza una schermata completa con tutti i pixel illuminati. Premendolo di nuovo si oscurano
tutti i pixel. Premendolo un’ultima volta si visualizza di nuovo il messaggio TEST DISPLAY. Vengono
visualizzati anche i numeri di riferimento della revisione per la scheda video e la scheda principale del sistema. I
LED indicatori di stato sul lato sinistro del display si illuminano in sequenza nei loro tre colori durante la verifica
del funzionamento. Premere il pulsante AVVIO per escludere SETUP e riprendere il normale funzionamento.
Premere il pulsante SETUP per continuare l’impostazione del sistema.

Messaggi di errore visualizzati

Self-diagnostic software has been incorporated into all SB-5500 Balance Control Units. If a problem ever
occurs with an SBS system, it is reported on the front panel display as an error code. Below is a listing of
these error codes, a description of when the Control Unit automatically runs each test, how each code is
cleared, the definition of each error message, and prescribed action to be taken by the user.

Press CLEAR or CANCEL to manually clear a displayed error message. Once an error is cleared, it will be
displayed again when the error condition is next detected. To further isolate defective components a series of
test operations accompany some of the error codes.

Please indicate the Error Code (letter) of any displayed Errors when returning equipment for repair. Also
please provide as much detail as possible regarding the conditions when problems were encountered, and the
symptoms experienced.

<table>
<thead>
<tr>
<th>Codice di errore</th>
<th>Messaggio</th>
<th>Definizione</th>
<th>Intervento</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>RPM FUORI GAMMA DI FUNZIONAMENTO 300-30000 VERIFICARE SENSORE RPM</td>
<td>Controllo eseguito continuamente. Visualizzato se il segnale RPM inviato dall’equilibratore è minore di 300 RPM o maggiore di 30.000 RPM.</td>
<td>Si cancella automaticamente. Verificare la velocità di funzionamento della rettificatrice. Se la macchina funziona a oltre 30.000 giri/min, consultare il fornitore del sistema di equilibratura SBS. Se la macchina funziona entro i limiti di velocità nominali e questo messaggio di errore persiste, c'è un guasto al sensore RPM nell'equilibratore. L'equilibratore deve essere restituito per essere sottoposto a manutenzione.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Si cancella automaticamente quando il sensore viene rilevato. Controllare le connessioni del sensore e riavviare l'accensione. Se il messaggio persiste, occorre riparare il sensore.</td>
</tr>
<tr>
<td>B</td>
<td>SENSORE VIB GUASTO APRIRE - VERIFICA CAVO E CONNETTORI - VEDI MANUALE</td>
<td>Controllo eseguito continuamente. Sensore delle vibrazioni non rilevato. La causa potrebbe essere un sensore difettoso o nessun sensore collegato.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Si cancella automaticamente. Scollegare l'equilibratore dal circuito di alimentazione CA prima di controllare i cavi e i connettori, e il sensore per stabilire se è in cortocircuito. Se non è possibile isolare il problema, il sensore, il cavo e/o l’unità di comando devono essere restituiti per essere riparati.</td>
</tr>
</tbody>
</table>

42 Sistema di equilibratura
<table>
<thead>
<tr>
<th>Codice di errore</th>
<th>Messaggio</th>
<th>Definizione</th>
<th>Intervento</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>VALVE DRIVER FAULT (GUASTO AL COMANDO DELLA VALVOLA) SHORT – CHECK CABLE AND CONNECTORS (CORTO – CONTROLLARE CAVO E CONNETTORI) – SEE MANUAL (SI VEDA IL MANUALE)</td>
<td>Controllato alla fine dell’impulso della valvola. Rilevato corto circuito della valvola.</td>
<td>Eliminato manualmente. Stabilire quale componente è difettoso invertendo le parti con un altro sistema o utilizzando il test diagnostico seguente. Restituire il componente difettoso per la riparazione. Se in dubbio, restituire tutti gli articoli. Test: spegnere il mandrino rettificatore e scollegare il cavo dell’equilibratore dall’equilibratore ma non dall’unità di controllo. Premere il pulsante MAN. per entrare nella modalità di controllo manuale. Tenere premuto il primo dei quattro pulsanti manuali della valvola per 15 secondi. Ripetere per ciascuno dei pulsanti manuali, uno alla volta. Se viene visualizzato l’errore E, è necessario eliminare questo errore. Se durante il test non si verificano altri errori, c’è un problema con il blocco della valvola. Se viene visualizzato D o F, continuare con questo test. Scollegare il cavo dall’unità di controllo e ripetere il test precedente utilizzando tutti e quattro i pulsanti manuali del motore, uno alla volta. Se viene visualizzato l’errore E, è necessario eliminare questo errore. Se durante il test non si verificano altri errori, c’è un problema con il cavo del blocco della valvola. Se viene visualizzato D o F, c’è un problema con l’unità di controllo.</td>
</tr>
<tr>
<td>F</td>
<td>VALVE DRIVER FAULT (GUASTO AL COMANDO DELLA VALVOLA) EXCESS CURRENT (CORRENTE ECESSIVA) – PERFORM MANUAL FUNCTION TEST (ESEGUIRE IL TEST DELLA FUNZIONE MANUALE)</td>
<td>Controllato alla fine dell’impulso della valvola. Valvola, rilevata corrente eccessiva (corto o stallo).</td>
<td>Eliminato manualmente o premendo il pulsante Auto (Automatico). Verificare che entrambe le estremità del cavo del blocco della valvola sia ben collegate. Se i pin del connettore sono contaminati, pulirli con un detergente per contatti elettrici. Se il problema persiste, stabilire se il cavo del blocco della valvola è il componente difettoso invertendolo con un altro sistema o utilizzando un voltmetro e consultando lo schema allegato. Questo errore può essere causato da un guasto al treno del motore/ingranaggio all’interno dell’equilibratore. Restituire il cavo difettoso o il blocco della valvola per farlo riparare. In caso di dubbi, restituire entrambi gli articoli.</td>
</tr>
<tr>
<td>Codice di errore</td>
<td>Messaggio</td>
<td>Definizione</td>
<td>Intervento</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
Test: controllare se ci sono cortocircuiti nei cavi e nei connettori, e reiniziare la verifica del sistema. Scollegando un cavo alla volta dall’unità di comando si può isolare più facilmente il componente causa del problema. Se l’errore persiste, restituire l’unità di comando e i cavi per farli riparare. |
Controllare se ci sono cortocircuiti nei connettori e nei cavi di interfaccia dell’unità di comando dell’equilibratore e del controllore della macchina, e reiniziare la verifica del sistema. Scollegando un cavo alla volta dall’unità di comando si può isolare più facilmente il componente causa del problema.
Se il sistema SBS è cablato al controllore della macchina, verificare che il cavo di interfaccia non presenti cortocircuiti. Il cavo di interfaccia non viene fornito con il sistema SBS e l’utente è responsabile della riparazione. Se l’errore persiste, restituire l’unità di comando e i cavi per farli riparare. |
| I | EQUIL. AUT. NON OK LIMITE NON RAGGIUNGIBILE EQUILIBRATURA OTTIMALE SI OTTIENE CON | Controllo eseguito durante il ciclo di equilibratura automatica. Equilibratura automatica non riuscita – impossibile raggiungere il limite. | Va cancellato manualmente o premendo il pulsante Auto.
Ripristinare l’impostazione IMPULSI su “CAUTO” e verificare l’integrità del sistema (vedere la sezione Guida alla soluzione dei problemi). Se l’errore persiste, le cause possibili sono due.
1) LIMITE impostato su un valore troppo basso - Il LIMITE deve essere di 0,2 unità superiore al livello di vibrazioni di fondo misurato (vedere la sezione Altre sorgenti di vibrazioni).
2) L’equilibratore fornito è di taglia inadeguata per l’applicazione. Condurre il test descritto nella sezione Verifica delle dimensioni dell’equilibratore. Se i risultati del test sono fuori dell’intervallo di livelli suggerito, rivolgersi al fornitore del sistema di equilibratura SBS per discutere la sostituzione. |
| J | MANCA SEGNALE RPM VERIFICARE CAVI VERIFICARE MANDRINO | Controllo eseguito continuamente. Nessun segnale RPM in ingresso, possibile circuito aperto nel sensore RPM. | Si cancella automaticamente o premendo il pulsante Auto.
Accertarsi che il mandrino sia in funzione, con il cavo dell’equilibratore collegato a entrambe le estremità prossime all’equilibratore e all’unità di comando. Determinare qual è il componente difettoso scambiando parti con un altro sistema. Restituire il componente difettoso per farlo riparare. Nel dubbio, restituire tutti i componenti. |
<table>
<thead>
<tr>
<th>Codice di errore</th>
<th>Messaggio</th>
<th>Definizione</th>
<th>Intervento</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>CONDIZIONE ANORMALE CICLO EQUIL. COMPLETO DOPO RILEVAZ. ERRORE VEDI MANUALE</td>
<td>Controllo eseguito una volta completato il ciclo di equilibratura automatica. Equilibratura completata con errori (dopo che l’errore è stato rilevato e cancellato).</td>
<td>Va cancellato manualmente. Nessun intervento necessario oltre alla cancellazione dell’errore.</td>
</tr>
<tr>
<td>M</td>
<td>FILTER CONTACT OPEN (CONTATTO FILTRO APERTO) COOLANT FILTER CLOGGED (FILTRO DEL REFRIGERANTE OTTURATO) – CLEAN OR REPLACE COOLANT FILTER (PULIRE O RESTITUIRE IL FILTRO DEL REFRIGERANTE)</td>
<td>Verificato durante il ciclo di autobilanciamento. L’indicatore del filtro del refrigerante indica un filtro otturato.</td>
<td>È scomparso automaticamente. Arrestare la macchina, pulire o sostituire il filtro e riavviare l’equilibratura.</td>
</tr>
<tr>
<td>N</td>
<td>CHAMBER FULL (CAMERA PIENA) EMPTY CHAMBER AND RESTART BALANCING (SVUOTARE LA CAMERA E RICOMINCIARE L’EQUILIBRATURA) CHECK INITIAL UNBALANCE (CONTROLLARE LO SBLANCIAMENTO INIZIALE)</td>
<td>Controllato al completamento del ciclo automatico di equilibratura. Le camere di equilibratura potrebbero essere piene.</td>
<td>È scomparso automaticamente. Arrestare il mandrino della macchina, svuotare le camere e riavviare l’equilibratura. Se il problema persiste, le camere sono intasate di sporczia e la capacità è ridotta oppure lo sbilanciamento è troppo grande per le camere installate.</td>
</tr>
<tr>
<td>O</td>
<td>RPM UNSTABLE (RPM INSTABILE) CHECK SPINDLE (VERIFICARE IL MANDRINO) CHECK MACHINE (VERIFICARE LA MACCHINA)</td>
<td>Verificato durante il ciclo di autobilanciamento. Lettura instabile dal sensore RPM.</td>
<td>Eliminato in automatico. Arrestare la macchina, verificare l’impostazione del sensore di velocità. Verificare il funzionamento del sensore di velocità, se necessario sostituirlo</td>
</tr>
<tr>
<td>P</td>
<td>CHECK DIRECTION SETTING (VERIFICARE IMPOSTAZIONE DI DIREZIONE)</td>
<td>Verificato durante il ciclo di autobilanciamento. Impostazione della direzione errata.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ERRORE TENSIONE INTERNA</td>
<td>Controllo eseguito continuamente. Guasto a uno degli alimentatori interni dell’unità di comando.</td>
<td>Annotare le condizioni in cui si è verificato l’errore e restituire l’unità di comando per farla riparare.</td>
</tr>
<tr>
<td></td>
<td>FPGA NON PROGRAMMATO</td>
<td>Controllo eseguito all’accensione. La scheda di dispositivo indicata non risponde. Slot (1-4)</td>
<td>Provare a reinserire la scheda sulla scheda di circuiti principale dell’unità di comando. Se l’errore persiste, la scheda è guasta e deve essere sostituita.</td>
</tr>
</tbody>
</table>
Appendice A: Dati tecnici

Caratteristiche fisiche

Unità di comando per più dispositivi
Quattro slot disponibili accettano queste schede di comando:

- SB-5512 Equilibratori meccanici con connessione cablata
- SB-5518 Idroequilibratori
- SB-5522 Sistema di monitoraggio delle emissioni acustiche (AEMS, Acoustic Emissions Monitoring System)
- SB-5532 Equilibratori meccanici con connessione senza contatti
- SB-5543 Unità di comando manuale dell'equilibratura

Compatibile con i sistemi SB-4500
Funziona con gli attuali equilibratori/cavi, sensori, interfacce hardwire CNC/PCL

Display
Tipo: a cristalli liquidi TFT a colori
Area attiva: 480 A x 272 L pixel
95 mm x 53,86 mm

Multilingue
Inglese, cinese, francese, tedesco, italiano, polacco, russo, spagnolo, svedese

Interfacce di comunicazione
Ethernet TCP/IP, USB 2.0, Profibus DP, hardwire CNC/PLC (uscite opto-isolate)

Scelta di alimentazione CC o CA
Alimentazione CC: Ingresso da 21 a 28 V CC. 5,5 A max a 21 V CC. Protezione contro l'inversione di tensione.

Connettore: Molex 50-84-1030 o equivalente
Contatti: Molex 02-08-1002 o equivalente

Alimentazione CA: 100-120 V CA, 50/60 Hz, 2 A max; 200-240 V CA, 50/60 Hz, 1 A max. Le variazioni della tensione di alimentazione principale non devono superare ± 10% della tensione di alimentazione nominale.

Prestazioni

Indicazione di RPM
Da 300 a 30.000 RPM

Intervallo di vibrazioni sub-micron
Da 50 μg a 1,25 g

Risoluzione della visualizzazione del livello di vibrazioni
Tre opzioni selezionabili dall'utente:
1) 0,1 μm 0,01 mil 0,01 mm/s 1 mil/s
2) 0,01 μm 0,001 mil 0,001 mm/s 0,1 mil/s
3) 0,001 μm 0,001 mil 0,001 mm/s 0,01 mil/s

Ripetibilità della visualizzazione del livello di vibrazioni
6.000 RPM ± 1% a 5,0 μm
300 – 30.000 RPM ± 2% a un rapporto segnale/rumore di 50:1

Precisione della visualizzazione del livello di vibrazioni
6.000 RPM ± 2% a 5,0 μm
300 – 30.000 RPM ± 4% a un rapporto segnale/rumore di 50:1

Risoluzione dell'equilibratura automatica
Spostamento di 0,02 micron a 6.000 RPM

Filtro delle vibrazioni
Il filtro digitale personalizzato ha larghezza di banda pari a ± 3% del valore RPM misurato

Certificazioni
ETL e CE
www.sbs.schmitt-ind.com/support/certifications/

Ambientali e installazione

Grado di inquinamento 2
Categoria di installazione II
IP54, NEMA 12
Intervallo delle temperature ambiente: da 5 a 55 °C

Sensore delle vibrazioni

Intervallo della sensibilità ± 25 g
Risoluzione della sensibilità 0,0001 g
Sensibilità di tensione 100 mV/g
Corrente di eccitazione Da 2 a 8 mA
Risposta in frequenza Da 0,5 a 5000 Hz
Temperatura di funzionamento Da 0 a +70 °C
Appendice B: Elenco dei ricambi

Codice Descrizione

<table>
<thead>
<tr>
<th>Cavi del blocco della valvola</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SB-46xx</td>
<td>Cavo del blocco della valvola/prolunga per SH-4000</td>
</tr>
<tr>
<td>SB-46xx-W</td>
<td>Cavo del blocco della valvola per il modello vecchio SH-1942</td>
</tr>
<tr>
<td>CA-0121</td>
<td>DIN maschio a 12 pin (estremità di controllo per i cavi serie 46xx)</td>
</tr>
<tr>
<td>CA-0122</td>
<td>DIN femmina a 12 pin (estremità del blocco della valvola per i cavi serie 46xx)</td>
</tr>
</tbody>
</table>

Comandi/opzioni

<table>
<thead>
<tr>
<th>Codice</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB-24xx-L</td>
<td>Cavo interfaccia hardwire (lunghezze standard)</td>
</tr>
<tr>
<td>SB-43xx</td>
<td>Cavo tastierino remoto per SB-5500</td>
</tr>
<tr>
<td>SB-5500</td>
<td>Unità di comando (espandibile a 4 slot per schede)</td>
</tr>
<tr>
<td>SB-5512</td>
<td>Scheda equilibratore meccanico aggiuntivo</td>
</tr>
<tr>
<td>SB-5518</td>
<td>Scheda Hydrokompenser (idroequilibratore) aggiuntivo</td>
</tr>
<tr>
<td>SB-5522</td>
<td>Scheda sistema di monitoraggio gap/collisione AEMS</td>
</tr>
</tbody>
</table>

Sensore delle vibrazioni

<table>
<thead>
<tr>
<th>Codice</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB-14xx</td>
<td>Cavo sensore (lunghezze standard)</td>
</tr>
<tr>
<td>SB-16xx</td>
<td>Cavo di prolunga sensore (lunghezze standard)</td>
</tr>
</tbody>
</table>

Opzioni di fissaggio dell'unità di comando

<table>
<thead>
<tr>
<th>Codice</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>SK-5000</td>
<td>Pannello rack: SB-5500, massima larghezza con 1/2 cieco, 3U</td>
</tr>
<tr>
<td>SK-5001</td>
<td>Pannello rack: SB-5500, larghezza parziale 3U con impugnature</td>
</tr>
<tr>
<td>SK-5002</td>
<td>Pannello rack: SB-5500, staffa 1/2 rack 3U</td>
</tr>
<tr>
<td>SK-5003</td>
<td>Supporto unità di comando: SB-5500, flangia inferiore</td>
</tr>
<tr>
<td>SK-5004</td>
<td>Supporto unità di comando: SB-5500, staffa a 90 gradi, involucro</td>
</tr>
<tr>
<td>SK-5005</td>
<td>Supporto tastierino: kit telaio pannello a filo</td>
</tr>
</tbody>
</table>

Altri componenti

<table>
<thead>
<tr>
<th>Codice</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH-0078</td>
<td>Gruppo relé: CH-0080 Indicatore del filtro</td>
</tr>
<tr>
<td>CH-0080-E</td>
<td>Elemento/schermo sostitutivo del filtro</td>
</tr>
<tr>
<td>CH-0080-V</td>
<td>Gruppo filtro completo con indicatore e raccordi</td>
</tr>
<tr>
<td>CH-4001</td>
<td>Valvola solenoide: >SH-4000</td>
</tr>
<tr>
<td>CH-4013</td>
<td>Manometro: 0-4 BAR/60 PSI, 63 mm (1,5")</td>
</tr>
<tr>
<td>CH-4013-A</td>
<td>Manometro: 0-10 BAR/150 PSI, 63 mm (1,5")</td>
</tr>
<tr>
<td>SH-1778</td>
<td>Sensore RPM con cavo da 3 m</td>
</tr>
<tr>
<td>SH-1779</td>
<td>Prolunga del sensore RPM, 10 m</td>
</tr>
<tr>
<td>CH-2440</td>
<td>Interruttore di prossimità sostitutivo: arrotondato diametro 8,0 mm -Ugelli arrotondati</td>
</tr>
<tr>
<td>CH-2441</td>
<td>Interruttore di prossimità sostitutivo: filo M8 -SH-1778</td>
</tr>
<tr>
<td>CH-2443</td>
<td>Interruttore di prossimità sostitutivo: rettangolare. -Ugelli piatti</td>
</tr>
</tbody>
</table>

xx nel codice = lunghezza del cavo in piedi (ft)

Opzioni standard 11 [3,5 m], 20 [6,0 m] o 40 [12,0 m], ad es. SB-4811 = 11 ft [3,5 m]
Appendice C: Installazione della scheda dell’equilibratore

Attrezzi necessari:
1. Cacciavite a croce Phillips
2. Bracciale di messa a terra

Procedura
1. Scollegare l’unità dalla presa di corrente, capovolgerla e collocarla su una superficie sicura contro la scarica elettrostatica.
2. Rimuovere la vite del coperchio dal pannello posteriore dell’unità.
3. Rimuovere la vite dello slot e il coperchio dello slot vuoto.
4. Inserire la scheda nella scheda di circuiti principale mentre si fa scorrere il bordo metallico nelle scanalature di accoppiamento all’interno del pannello posteriore.
5. Inserire la vite dello slot per fissare la scheda.
6. Riposizionare il coperchio e serrare la vite.

Nota: tutte le operazioni di manutenzione (compresa l’installazione della scheda) devono essere eseguite da un tecnico qualificato; altrimenti restituire l’unità a Schmitt Industries Inc. per fare eseguire la manutenzione.

L’unità è mostrata capovolta con il coperchio rimosso. Per evitare di danneggiare la scheda, il tecnico deve aprire l’unità ed estrarre la scheda dalla busta antistatica solo su una superficie sicura contro la scarica elettrostatica e solo dopo aver collegato se stesso alla massa di terra.

Vista interna del pannello posteriore

Il bordo metallico della scheda (o il coperchio dello slot vuoto) scorre nelle scanalature di accoppiamento all’interno del pannello di comando.
Appendice D: Schema circuitale del sistema
Modalità di ordinazione del sistema di equilibratura SBS

Il sistema di equilibratura SBS è venduto come un set che risponde ai requisiti della rettificatrice del cliente. Il sistema consiste di un equilibratore, un’unità di comando dell’equilibratore basata su microprocessore, un cavo dell’equilibratore, un sensore delle vibrazioni e tutti gli accessori e attrezzi necessari per l’installazione sulla rettificatrice.

La selezione del sistema di equilibratura si articola in tre semplici fasi:

1) Completare il questionario sull’applicazione fornito dal rivenditore del sistema di equilibratura SBS.

2) Il base alle risposte fornite al questionario, il rivenditore seleziona l’appropriato adattatore di fissaggio e determina la compensazione della massa richiesta dall’applicazione.

3) Il sistema di equilibratura SBS viene conseguito e adattato alle specifiche esigenze. Il sistema è fornito con istruzioni complete, che semplificano la formazione dell’operatore e l’uso, assicurando una veloce redditività dell’investimento.